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Jones and Boston conjectured that the factorization process for iter-
ates of irreducible quadratic polynomials over finite fields is approxi-
mated by a one-step Markov model. In this paper, we find unexpected
and intricate behavior for some quadratic polynomials, in particu-
lar for those whose critical orbits have large cycle and small tail.
We also propose a multistep Markov model that explains these new
observations better than the model of Jones and Boston.

1. INTRODUCTION

Let f be an irreducible quadratic polynomial over a finite field
F q of odd order q. We are interested in understanding the
factorization of iterates of f . This problem was previously
studied in [Gomez-Perez et al. 12, Gomez-Perez et al. 11,
Ahmadi et al. 12, Odoni 88, Jones and Boston 12]. In the last
cited work, the authors associated a one-step Markov process
to f and conjectured that its limiting distribution explains the
shape of the factorization of large iterates of f .

As an example, consider f (x) = x2 + 1 ∈ F 7[x]. The ap-
proach of Jones and Boston was to define the type of a poly-
nomial g ∈ F 7[x] (in this case, whether g(1), g(2), g(5) are
squares or nonsquares in F 7). They then observed that the
types of factors of g( f (x)) are highly constrained, but not
always determined, by the type of g(x). They then conjec-
tured that the distribution of types for factors of large iter-
ates is approximated by a one-step Markov process whereby
each allowable transition of types is given equal proba-
bility in the transition matrix. See Section 2 for more
details.

In this paper, we give new data that strongly suggest that a
more complicated model is required in certain cases, and we
propose a multistep Markov model that fits the new data well.
For example, for the iterates of x2 + 1 ∈ F 7[x], which were
studied in detail in [Jones and Boston 12], it is noted that con-
trary to what was predicted there, certain three-step transitions
of types apparently never occur. The multistep Markov model
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takes this into account, and it turns out that the limiting relative
distribution of types predicted by this new model more closely
approximates data for large iterates than the old model did.
Note that the multistep model simply reduces to the one-step
model for many polynomials f .

The paper is structured as follows. In Section 2, we make
some definitions, give preliminary results, and recall back-
ground to the problem. In Section 3, we provide some ex-
amples with new, unexpected behavior. In Section 4, we
propose a multistep Markov model to describe the factor-
ization of iterates and conjecture that it provides a better
explanation for the process. Section 5 supports this model
via actual data corresponding to the examples given in Sec-
tion 3. An appendix (Section 6) gives some further exam-
ples in which the multistep model reduces to the one-step
model.

2. SETUP

We begin with a definition.

Definition 2.1. Let F q be a finite field of odd order q. Consider
a quadratic polynomial f (x) defined over F q . For all n ∈ N ,
we define the nth iterate of f to be f n(x) := f

(
f n−1(x)

) ∈
F q [x]. We make the convention that f 0(x) := x .

For example, suppose f (x) = x2 + 1 ∈ F 7[x]. Then
f 2(x) = f ( f (x)) = x4 + 2x2 + 2, f 3(x) = f ( f 2(x)) =
x8 + 4x6 + x4 + x2 + 5, and so on, all of which are computed
over F 7.

Definition 2.2. Let f (x) = ax2 + bx + c ∈ F q [x] (a �= 0),
and let α = −b/2a be the critical point of f . The critical
orbit of f is the set O := { f k(α) | k = 1, 2, 3, . . . }, and the
number of elements of O is the orbit size of f , denoted by o.

To illustrate the definition of the critical orbit, we consider
the previous example. The critical point of f (x) = x2 + 1 is
0, and f (0) = 1, f 2(0) = 2, f 3(0) = 5, f 4(0) = 5. It follows
that f k(0) = 5 for all k ≥ 3. Therefore, the critical orbit for
f (x) = x2 + 1 ∈ F 7[x] is {1, 2, 5}.

Definition 2.3. Let f be a quadratic polynomial over F q , and
let α be the critical point of f . We define the critical tail of f
to be the set

T : = {
f k(α) | k ≥ 1, f i (α) �= f k(α) for all i �= k

}
.

Similarly, we call the number of elements of T the tail size of
f and denote it by t .

Remark 2.4. This definition may seem counterintuitive, but
in the case of quadratic polynomials, we cannot have f n(γ ) =
f 1(γ ) without having f n−1(γ ) = γ , where γ is the critical
point of f .

Example 2.5. Let f (x) = x2 + 2 ∈ F 5[x]. Its critical orbit
is {2, 1, 3}, and so the critical tail has size 1 by the above
definition.

With the choice f (x) = x2 + c, the critical orbit of f (x) ∈
F q [x] becomes {c, c2 + c, (c2 + c)2 + c, . . . }.

Definition 2.6. Let f (x) ∈ F q [x] be an irreducible quadratic
polynomial with critical orbit O, and take g(x) ∈ F q [x]. We
define the type of g(x) at β to be s if g(β) is a square in F q ,
and n if it is not a square. The type of g is a string of length
|O| whose kth entry is the type of g(x) at the kth entry of O.
The kth entry is also called the kth digit.

For instance, given x2 + 1 ∈ F 7[x], consider g(x) = x2 +
2x + 2. Then g(1) = 5, g(2) = 3, g(5) = 2, which implies that
the type of g is nns.

Definition 2.7. Given an irreducible quadratic polynomial
f (x) ∈ F q [x] and a polynomial g(x) ∈ F q [x], we call the
factors of g( f (x)) the children of g. Also, for every natu-
ral number m, the factors of g ( f m(x)) are called the m-step
descendants of g.

Definition 2.8. Let f (x) ∈ F q [x] be a quadratic polynomial,
and let γ be any element in F q . We say that γ is periodic if
there exists i ∈ N such that f i (γ ) = γ .

Next, we quote a lemma that is one of the building blocks
of our paper.

Lemma 2.9. [Jones and Boston 12] Suppose that f ∈ F q [x]
is quadratic with critical orbit of length o and all iterates
separable. Let g ∈ F q [x] be irreducible of even degree. Sup-
pose that h1h2 is a nontrivial factorization of g( f (x)), and
let di and ei be the respective i th digits of the types of h1

and h2. Then there is some k, 1 ≤ k ≤ o, with do = ek and
eo = dk. Moreover, k = o if and only if γ is periodic, and if
γ is not periodic, then we have k = t , where t is the tail size
of f .

In [Jones and Boston 12], the authors modeled the dis-
tribution of types of factors (weighted by their degree)
of iterates of f by a one-step Markov model as fol-
lows: They consider two processes. The first, called the
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factorization process of f , consists of the types of the ir-
reducible factors in the actual factorization of the iterates
of f and tracks how the type of a factor transitions to the
types of its children. See [Jones and Boston 12, p. 1853] for
details.

The second is a one-step Markov process, which they then
conjecture models what happens to the types under the first
process. This second process is a time-homogeneous one-
step Markov process Y1, Y2, . . . related to f , which they
call the f -Markov process. The state space is the space
of types of f , namely {n, s}o, ordered lexicographically.
They define the Markov process by giving its transition
matrix

M1 = (P
(
Ym = Tj | Ym−1 = Ti )

)
,

where Ti and Tj vary over all types. Note that the entries of
each column of M1 sum to 1. They define M1 by assuming that
all allowable types of children arise with equal probability. To
define allowable type, note that f acts on its critical orbit, and
thus also on the set of types. Indeed, if T is a type, then f (T )
is obtained by shifting each entry one position to the left and
using the former mth entry as the new final entry, where m is
such that f o+1(γ ) = f m(γ ). If g has type T that begins with
n, then g has only one child, and it will have type f (T ), the
only allowable type in this case. If T begins with s, then g has
two children, whose types have product f (T ). Among pairs
of types T1, T2 with T1T2 = f (T ), they call allowable those
that satisfy the conclusion of Lemma 2.9, namely dk = eo and
ek = do with k = o if γ is periodic, and k = t if γ is aperiodic,
where t is the tail size of f . See the examples in the following
section for illustration.

Conjecture 3.6 in [Jones and Boston 12] states that the rel-
ative frequencies of all non-n · · · n states in the factorization
process for f converge to those of the f -Markov process. In the
current paper, we discover that the story of these descendants
can be quite different in certain cases, contrary to what Jones
and Boston suggested. What happens is that certain multistep
transitions of types allowed by the above model apparently do
not actually arise in the factorization process. To discuss this
phenomenon, we need the following definition.

Definition 2.10. Let Z1, Z2, . . . be an arbitrary stochastic
process. We define an m-step transition matrix as Mm =
(P(Zm+1 = Tj | Z1 = Ti )), where Ti and Tj vary over all
types.

Remark 2.11. The f -Markov process in
[Jones and Boston 12] implies that Mm = M1

m always
holds because that process is a Markov chain.

In the next section, we shall observe that for certain
f , this last formula does not give m-step transition matri-
ces that most accurately model the factorizations of large
iterates.

3. NEW PHENOMENA

We now present three families of examples that indicate that a
multistep Markov model better models data from large iterates
of certain irreducible quadratic f ∈ Fq [x].

Note that to check which multistep transitions of types
arise in the factorization process, we wrote a simple MAGMA

program that given f , inputs one million random irreducible
polynomials of 2-power degree and records their types and
those of their children, grandchildren, and so on. For most
f , i.e., those not of the forms in Observations 3.2, 3.4, and
3.6, all multistep transitions predicted by the one-step model
arose (and approximately equally often). See the appendix for
details. The examples below indicate where we found glaring
omissions.

Example 3.1. The first family consists of f with orbit size 3
and tail size 1. Let f ∈ F q [x] be of the form f (x) = x2 + c.
Note that all c-values with orbit size 3 and tail of size 1 are
roots of the polynomial given by

(
f 3(c) − f (c)

)
1cm

((
f 2(c) − f (c)

)
,
(

f 2(c) − c
)) ,

which happens to be c2 + 1. So the desired polynomials in
this case are the quadratics of the form f (x) = x2 + i , where
i is a square root of −1 in F q . (Note that to do so, we need
q ≡ 1 (mod 4) and in fact q ≡ 5 (mod 8) to ensure that f is
irreducible.) The critical orbit is

{i, i − 1,−i}.

Using Lemma 2.9, the following 1-step transitions arise:

nnn �→ nnn, nns �→ nsn,

nsn �→ sns, nss �→ sss,

snn �→ nns/ssn or nss/snn,

sns �→ nns/snn or nss/ssn,

ssn �→ nnn/nsn or sns/sss,

sss �→ nnn/nnn or nsn/nsn or sns/sns or sss/sss.
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It follows that

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1/4 1/4

0 0 0 0 1/4 1/4 0 0

0 1 0 0 0 0 1/4 1/4

0 0 0 0 1/4 1/4 0 0

0 0 0 0 1/4 1/4 0 0

0 0 1 0 0 0 1/4 1/4

0 0 0 0 1/4 1/4 0 0

0 0 0 1 0 0 1/4 1/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observation 3.2. Let q ≡ 5 (mod 8). Let f (x) = x2 + i ∈
F q [x], where i is a square root of −1. Then the following
2-step transitions were never observed:

nsn �→ nns/snn, nss �→ nnn/nnn, nss �→ sns/sns.

Thus if we adjust M2 accordingly, it appears that the fac-
torization process is best modeled by a process that obeys
M2 = M2

1 + A, where

A = M2 − M2
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1/4 0 0 0 0

0 0 −1/4 0 0 0 0 0

0 0 0 1/4 0 0 0 0

0 0 1/4 0 0 0 0 0

0 0 −1/4 0 0 0 0 0

0 0 0 −1/4 0 0 0 0

0 0 1/4 0 0 0 0 0

0 0 0 1/4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that according to the one-step model, A would be 0.

Example 3.3. The second family consists of f with orbit
size 4 and tail size 1. If we consider the same polynomial
f (x) = x2 + c as in the first example, all c-values with orbit
size 4 and tail size 1 are the roots of the polynomial given by

(
f 4(c) − f (c)

)
lcm

((
f 2(c) − f (c)

)
,
(

f 3(c) − c
)) ,

which happens to be c6 + 2c5 + 2c4 + 2c3 + c2 + 1. Let c0

be a root of this polynomial in some F q such that x2 + c0

is irreducible. According to Lemma 2.9, the following 1-step

transitions are allowable:

nnnn �→ nnnn, nnns �→ nnsn, nnsn �→ nsnn,

nnss �→ nssn, nsnn �→ snns, nsns �→ snss,

nssn �→ ssns, nsss �→ ssss,

snnn �→ nnns/sssn or nnss/ssnn or nsns/snsn

or nsss/snnn,

snns �→ nnns/ssnn or nnss/sssn or nsns/snnn

or nsss/snsn,

snsn �→ nnns/snsn or nnss/snnn or nsns/sssn

or nsss/ssnn,

snss �→ nnns/snnn or nnss/snsn or nsns/ssnn

or nsss/sssn,

ssnn �→ nnnn/nssn or nnsn/nsnn or snns/ssss

or snss/ssns,

ssns �→ nnnn/nsnn or nnsn/nssn or snns/ssns

or snss/ssss,

sssn �→ nnnn/nnsn or nsnn/nssn or snns/snss

or ssns/ssss,

ssss �→ nnnn/nnnn or nnsn/nnsn or nsnn/nsnn

or nssn/nssn or snns/snns or snss/snss or

ssns/ssns or ssss/ssss.

It follows that M1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0 1
8

1
8

1
8

1
8 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1
8

1
8

1
8

1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Analogously to the first example, however, we observe that
once again, certain 2-step transitions are apparently forbidden.

Observation 3.4. Let c0 be a root of c6 + 2c5 + 2c4 + 2c3 +
c2 + 1 in F q and suppose that f (x) = x2 + c0 ∈ F q [x] is ir-
reducible. Then the following 2-step transitions were never
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observed:

nsnn �→ nnns/ssnn, nsnn �→ nsns/snnn,

nsns �→ nnns/snnn, nsns �→ nsns/ssnn,

nssn �→ nnnn/nsnn, nssn �→ snns/ssns,

nsss �→ nnnn/nnnn, nsss �→ nsnn/nsnn,

nsss �→ snns/snns, nsss �→ ssns/ssns.

By the same reasoning as in Example 3.1, the factorization
process again appears to be best modeled by a process that
obeys M2 = M1

2 + A, where A is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0

0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0

0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0

0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0

0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0

0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0

0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
8 − 1

8 0 0 0 0 0 0 0 0

0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
8

1
8 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that according to the one-step model, A would be 0.

Example 3.5. Finally, we look at the family of examples with
orbit size 3 and tail size 2. We again consider the polynomial
f (x) = x2 + c. In this case, all c-values satisfying these sizes
are roots of the polynomial given by

(
f 3(c) − f 2(c)

)
c lcm

((
f 2(c) − f (c)

)
, ( f (c) − c)

) ,

which happens to be c3 + 2c2 + 2c + 2. Using Lemma 2.9,
the 1-step transitions are as given below:

nnn �→ nnn, nns �→ nss, nsn �→ sns,

nss �→ sss, snn �→ nsn/sns or nns/ssn,

sns �→ nnn/snn or sss/nss,

ssn �→ nns/nsn or sns/ssn,

sss �→ nnn/nnn or nss/nss or snn/snn or sss/sss.

It follows that

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1/4 0 1/4

0 0 0 0 1/4 0 1/4 0

0 0 0 0 1/4 0 1/4 0

0 1 0 0 0 1/4 0 1/4

0 0 1 0 0 1/4 0 1/4

0 0 0 0 1/4 0 1/4 0

0 0 0 0 1/4 0 1/4 0

0 0 0 1 0 1/4 0 1/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observation 3.6. Let c1 be a root of c3 + 2c2 + 2c + 2 in F q .
Let f (x) = x2 + c1 ∈ F q [x] be irreducible. Then the follow-
ing 3-step transitions were never observed:

nns �→ nss �→ sss �→ nss/nss,

nns �→ nss �→ sss �→ snn/snn.

In this case, on adjusting M3 accordingly, it appears that the
factorization process is best modeled by a process that obeys
M3 = M3

1 + A, where

A = M3 − M3
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/4 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −1/4 0 0 0 0 0 0

0 −1/4 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that according to the one-step model, A would be 0.

4. MULTISTEP MARKOV MODEL

The investigations in the previous section indicate that a one-
step Markov model does not always fit the factorization pro-
cess for iterates of quadratic polynomials. We need a multistep
(refined) model to explain the process, and we propose the fol-
lowing: Let f be an irreducible quadratic polynomial defined
over F q with critical tail size a − 1 and orbit size b. We define
a stochastic process Z1, Z2, . . . by giving its m-step transition
matrices Mm = (P(Zm+1 = Tj | Z1 = Ti )), as Ti and Tj vary
over all types.

Definition 4.1. The a-step Markov model based on two given
matrices A and B of fixed size 2b × 2b is the Markov model
having m-step transition matrices satisfying

Mm+a = Mm+a−1 B + Mm A ( 4–1)

with M−a+1 = · · · = M−2 = M−1 = 0, M0 = I .
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Remark 4.2. It easily follows that M1 = B, Mi = Mi
1 for

i = 1, 2, . . . , a − 1, and Ma = Ma
1 + A. Note that if A = 0,

then this model is simply the old one-step model.

We conjecture that the multistep Markov model given above
describes the factorization process for the iterates of f , pro-
vided that we choose the correct A and B depending on f .
The choice of B is easy: it is the matrix M1 furnished by
Lemma 2.9. As for A, we know what it should be in the fol-
lowing situation, but the general rule is unclear (in particular,
the appendix indicates that A = 0 often).

Definition 4.3. Suppose that f has tail size 1 and or-
bit size b. Let A be the 2b × 2b matrix whose entries
are all 0 except for those in the 2b−2 columns whose la-
beling begins ns. For those columns, exactly half the en-
tries in the i th row are zero, and the rows are as fol-
lows: 0, . . . , 0,−21−b, . . . ,−21−b if i ≤ 2b−1 and 1 (mod 4)
or i > 2b−1 and 2 (mod 4); −21−b, . . . ,−21−b, 0, . . . , 0
if i ≤ 2b−1 and 2 (mod 4) or i > 2b−1 and 1 (mod 4);
0, . . . , 0, 21−b, . . . , 21−b if i ≤ 2b−1 and 3 (mod 4) or i >

2b−1 and 0 (mod 4); 21−b, . . . , 21−b, 0, . . . , 0 if i ≤ 2b−1 and
0 (mod 4) or i > 2b−1 and 3 (mod 4). Then A is called the
discrepancy matrix of f .

Remark 4.4. Explicit discrepancy matrices for b = 3, 4 are
given in Examples 3.1 and 3.3 respectively.

To show that the above matrix A gives the correct discrep-
ancy matrix for our 2-step Markov model amounts to showing
that certain 2-step transitions of types do not arise. This is
equivalent to the following conjecture.

Conjecture 4.5. Let f be an irreducible quadratic polynomial
over F q with tail size t = 1 and orbit size o, and let g be an
even irreducible polynomial over F q whose type begins with
ns. Then the (o − 1)th digit of the type of each irreducible
factor of g( f (x)) is s.

Example 4.6. We now prove Conjecture 4.5 in a special case
with f (x) = x2 + c. Note that tail size being 1 means that
f o(0) = f 2(0) and f o(0) �= f 1(0), so the oth digit is −c, and
thus the (o − 1)th digit is α, where α2 + c = −c, i.e., α2 =
−2c. Suppose that g(x) = x4 + ax2 + b. Then g(x2 + c) fac-
tors as h(x)h(−x), since the type g begins ns, and we must
show that h(α) is a square. If h(x) = x4 + px3 + qx2 + r x +
s, then by comparing coefficients, we eliminate q, s, a, which
yields

h(α) =
(

α2 + pα

2
+ r

p

)2

=
(

−2c + r

p
+ pα

2

)2

.

Note that if p = 0, then one computes a2 − 4b = 0, implying
that g is the square of a polynomial, which is not the case.

Remark 4.7. Conjecture 4.5 applies to f (x) = x2 − 2, which
is the simplest polynomial of the form x2 + c with tail size 1.
It is, however, vacuous for factors of iterates of x2 − 2 itself,
because, as indicated in [Jones and Boston 12], the factors are
entirely of type nn after a finite number of iterates, whatever
q is.

With this preamble, we can now state the main conjecture
of our paper.

Conjecture 4.8. The limiting behavior of the a-step Markov
model is the same as the limiting behavior of the factorization
process.

We can provide evidence for Conjecture 4.5 by computing
factorizations of large iterates of given f and comparing the
distribution of factors to that of the limiting behavior of the a-
step Markov model. In particular, the multistep Markov model
predicts that in the limit, 100% of the factorizations of the
iterates will be of type nn . . . n (the unique sink), and it also
allows us to compute the limiting relative proportions of the
other types as follows.

We fix an arbitrary natural number m and define vi to be the
vector whose entries are the proportions of all 2b types (lex-
icographically ordered) for the (m + i)th iterate of the poly-
nomial f . Say v = (v1, v2, . . . , va). Then using (1), we see
that the next such a-tuple will, according to the model, be the
vector (v2, v3, . . . , va, Av1 + Bva). Denoting the associated
a2b × a2b transition matrix by T , we have

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 I · · · 0

0
...

...
. . .

...

I

A 0 · · · B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We can thereby interpret this multistep Markov model as a
Markov process on a larger number of states, with transition
matrix T . The limiting frequencies of the nonabsorbing states
are given, up to scaling, by the entries of an eigenvector of T
corresponding to its largest eigenvalue less than 1 [Seneta 06].

Combining this fact with the following lemma indicates
how the limiting proportions can be computed.

Lemma 4.9. With the notation as above, let e be an
eigenvector of the transition matrix T corresponding to
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Iterate nns nsn nss snn sns ssn sss
20 0.0251 0.1748 0.1163 0.0271 0.2541 0.1143 0.2883
21 0.0268 0.1661 0.1221 0.0267 0.2635 0.1222 0.2726
22 0.0300 0.1725 0.1253 0.0271 0.2487 0.1282 0.2681
23 0.0256 0.1689 0.1223 0.0253 0.2508 0.1226 0.2846
24 0.0238 0.1686 0.1240 0.0238 0.2542 0.1239 0.2817
25 0.0276 0.1669 0.1217 0.0272 0.2598 0.1220 0.2748
26 0.0263 0.1699 0.1276 0.0282 0.2526 0.1256 0.2697
27 0.0263 0.1677 0.1237 0.0269 0.2502 0.1231 0.2821

TABLE 1. Relative proportions of types (other than nnn) for factors
of iterates of f (x) = x2 + 2 ∈ F 5[x].

eigenvalue λ, and let e1 denote its first 2b entries. Then
e = (

e1, λe1, λ
2e1, . . . , λ

a−1e1
)
.

Proof. This lemma is a consequence of [Dennis et al. 76, The-
orem 3.2] (or it can be easily proven directly).

Again with the notation above, consider the eigenvector e
of T , corresponding to the largest eigenvalue less than 1, such
that the entries of e1 except the first one sum to 1. The entries
of e1 are the limiting proportions of the types that are not
nn . . . n.

5. DATA

In this section, we provide data corresponding to Examples 3.1,
3.3, and 3.5. In each case, we use the smallest q for which the
corresponding difference polynomial has a root and yields
an irreducible quadratic. Comparing the limiting proportions
predicted by the refined model with the data for each example,
we will illustrate how well the multistep Markov model fits.
Table 1 gives data for Example 3.1.

By comparison, if we consider the related block matrix in
the previous section, the first part e1 of an eigenvector for the

eigenvalue λ ≈ 0.9333801995 is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0000000000 · · ·
0.026110931 · · ·
0.170493119 · · ·
0.123960675 · · ·
0.026110931 · · ·
0.254036800 · · ·
0.123960675 · · ·
0.275326866 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 2 gives data for Example 3.3.
If we compute the appropriate eigenvector of the related

32 × 32 matrix, its first block e1 of size 16 is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0000000000 · · ·
0.018669399 · · ·
0.079050806 · · ·
0.049246267 · · ·
0.099196036 · · ·
0.018669399 · · ·
0.110198525 · · ·
0.049246267 · · ·
0.018669399 · · ·
0.119717366 · · ·
0.049246267 · · ·
0.079050806 · · ·
0.018669399 · · ·
0.130925265 · · ·
0.049246267 · · ·
0.110198525 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 3 gives data for Example 3.5.

Iterate nnns nnsn nnss nsnn nsns nssn nsss snnn snns snsn snss ssnn ssns sssn ssss
21 0.0180 0.0932 0.0446 0.0809 0.0203 0.1194 0.0536 0.0129 0.1114 0.0501 0.0845 0.0230 0.1227 0.0505 0.1152
22 0.0177 0.0705 0.0483 0.1086 0.0187 0.1039 0.0483 0.0137 0.1021 0.0486 0.0811 0.0210 0.1450 0.0497 0.1228
23 0.0178 0.0816 0.0414 0.0934 0.0182 0.1135 0.0476 0.0180 0.1305 0.0465 0.0870 0.0171 0.1272 0.0435 0.1166
24 0.0232 0.0804 0.0493 0.1044 0.0189 0.0992 0.0524 0.0183 0.1116 0.0559 0.0763 0.0169 0.1348 0.0527 0.1057
25 0.0190 0.0859 0.0469 0.1007 0.0191 0.1138 0.0486 0.0185 0.1254 0.0487 0.0769 0.0199 0.1187 0.0464 0.1114
26 0.0188 0.0739 0.0486 0.1056 0.0199 0.1020 0.0500 0.0173 0.1217 0.0493 0.0776 0.0194 0.1332 0.0514 0.1115
27 0.0178 0.0828 0.0497 0.0963 0.0189 0.1107 0.0493 0.0176 0.1266 0.0505 0.0792 0.0186 0.1218 0.0489 0.1115

TABLE 2. Relative proportions of types (other than nnnn) for factors of iterates of f (x) = x2 + 3 ∈ F 11[x].
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Iterate nns nsn nss snn sns ssn sss
26 0.0731 0.0728 0.1673 0.1827 0.0718 0.0722 0.3601
27 0.0760 0.0727 0.1695 0.1863 0.0699 0.0732 0.3523
28 0.0736 0.0754 0.1798 0.1734 0.0747 0.0729 0.3502
29 0.0654 0.0761 0.1639 0.1873 0.0772 0.0665 0.3636
30 0.0747 0.0762 0.1757 0.1876 0.0730 0.0714 0.3414
31 0.0714 0.0772 0.1735 0.1772 0.0766 0.0707 0.3535
32 0.0715 0.0713 0.1818 0.1910 0.0703 0.0706 0.3434
33 0.0716 0.0756 0.1720 0.1738 0.0783 0.0743 0.3544
34 0.0711 0.0708 0.1859 0.1863 0.0715 0.0718 0.3426

TABLE 3. Relative proportions of types (other than nnn) for factors
of iterates of f (x) = x2 + 1 ∈ F 7[x].

As mentioned before, in [Jones and Boston 12], the authors
proposed a one-step Markov process, and they supported this
claim by the example x2 + 1 over F 7. However, the result given
in Observation 3.6 does not follow this claim. To illustrate
how the multistep Markov model gives a better fit, Table 4
compares the limiting proportions predicted by the one-step
Markov model and those predicted by the multistep Markov
model.

It is particularly striking how much better the refined model
fits the data for sss.

6. APPENDIX

The following list gives other cases investigated but not cov-
ered in previous sections. In each instance, we found a par-
ticular irreducible f with orbit size o and tail size t , and
beginning with one million random irreducible polynomials g
of 2-power degree, we recorded their types and those of their
children, grandchildren, and so on.

Example 6.1. (o = 4, t = 2.) All c-values giving these sizes
are roots of c3 + c2 − c + 1. The first example is x2 + 4 ∈

Markov Model

Types One-Step Multistep
nns 0.073573805 · · · 0.071981460 · · ·
nsn 0.073573805 · · · 0.071981460 · · ·
nss 0.191577027 · · · 0.178322872 · · ·
snn 0.191577027 · · · 0.178322872 · · ·
sns 0.073573805 · · · 0.071981460 · · ·
ssn 0.073573805 · · · 0.071981460 · · ·
sss 0.322550722 · · · 0.355428413 · · ·

TABLE 4. Limiting proportions of types (other than nnn) for factors
of iterates of x2 + 1 ∈ F 7[x] predicted by the one-step Markov model
and the multistep Markov model.

F 7[x]. This has no missing 3-step transitions and appears to
follow the one-step Markov model.

Example 6.2. (o = 5, t = 2.) All c-values giving these
sizes are roots of c12 + 6c11 + 14c10 + 18c9 + 18c8 + 16c7 +
10c6 + 6c5 + 5c4 + 2c3 + 1. The first example is x2 + 12 ∈
F 17[x]. This has no missing 3-step transitions and appears to
follow the one-step Markov model.

Example 6.3. (o = 4, t = 3.) All c-values giving these sizes
are roots of c7 + 4c6 + 6c5 + 6c4 + 6c3 + 4c2 + 2c + 2. The
first example is x2 + 2 ∈ F 7[x]. This has no missing 4-step
transitions and appears to follow the one-step Markov model.

Example 6.4. (o = 5, t = 3.) All c-values giving these sizes
are roots of c8 + 4c7 + 6c6 + 6c5 + 4c4 + 1. The first exam-
ple is x2 + 1 ∈ F 11[x]. This has no missing 4-step transitions
and appears to follow the one-step Markov model.
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