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Abstract

Recovery, the process of uniquely determining market’s belief, time and risk prefer-

ences from asset prices, requires a subjective state-space specification of the underlying

economy that is not observed before the recovery is implemented. Different subjective

specifications lead to different recovery results that, albeit unique under the respective

specifications, are almost surely inconsistent with each other. This consistency issue

prevails universally in the original, extended, and approximate versions of the recovery,

given perfect (error-free and infinite) price data and when all required recovery assump-

tions are upheld. Consistency requirement highlights a new and general challenge for

the recovery paradigm.
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1 Introduction

The question of how much the observed prices of traded financial contracts can reveal about

unobserved market’s expectation and preference has long fascinated the finance research ar-

eas of market efficiency, rational and behavioral asset pricing, and out-of-sample forecasting.

Ross (2015)’s Recovery Theorem advances an ambitious approach to address this question

by identifying sufficient conditions on cashflow and pricing dynamics, under which today’s

price data of assets across different maturities suffice to simultaneously and uniquely deter-

mine the market’s preferences and transition probabilities across states. While the Recovery

Theorem’s conceptual formulation is elegant, its applicability depends foremost on the im-

plementability of the theorem in practice and the empirical merit of its underlying sufficient

conditions.

The current paper investigates various implementability aspects of the Recovery Theo-

rem’s original and generalized approaches, in both discrete and continuous state-time set-

tings. We observe that the recovery implementation necessarily posits a specification of the

underlying market’s state space at the onset and then proceeds to recover the market’s belief

and preference contingent on this state space specification. The state space specification is

not observed prior to the recovery implementation and therefore is endogenous in the recov-

ery process. An endogenous state space specification has profound implications on recovery

results. We demonstrate that different sets of results recovered under different state space

specifications are almost surely inconsistent with each other even when every set of results

is recovered uniquely under the respective specification. That is, the same key innovation of

employing different asset maturities and their prices to determine preferences and probabili-

ties of different states that defines the recovery process also makes the process almost surely

inconsistent. This inconsistency result holds universally for the original, extended, and ap-

proximate versions of the recovery approach, when price data are perfect and all required

assumptions of the Recovery Theorem are upheld.

The classic approach of Breeden and Litzenberger (1978) to recover the state transition

dynamics from asset prices is associated with the risk-neutral premise, in which the discount

factor is the risk-free rate. As a result, this approach recovers a risk-neutral transition
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probability, but not the one associated with the expectation and belief of the underlying

market. When the discount factor is not presumed, even if financial markets are complete,

many combinations of risk aversion and transition probabilities (i.e., belief) are consistent

with asset prices, making an unambiguous (unique) recovery of the market’s risk preference

and belief impossible. To alleviate this ambiguity, Ross (2015)’s Recovery Theorem posits on

the special class of time separable preferences and homogeneous transition probabilities and

demonstrates a unique recovery under these assumptions. Guided by the Recovery Theorem,

the implementation of the recovery paradigm specifies a state space and employs price data

to recover the preference and transition probabilities conditional on the specified state space.

Central and novel in our analysis is the concept of consistency in the recovery paradigm.

Intuitively, state space specification is a subjective input in the recovery process. Two ana-

lysts implement the recovery conditional on two different subjective state space specifications

and, under the recovery assumptions, obtain two respective unique sets of recovery results.

An important question is whether these results are consistent with each other and imply

the same underlying market preference and belief. Our paper addresses this key question

in three aspects. First, we quantify the consistency conditions for the recoveries under dif-

ferent subjective state space specification conditions. Second, we establish a necessary and

sufficient condition for the consistency of recoveries under different specifications to hold.

Third, we demonstrate the origin of recovery consistency from a continuous state-time set-

ting perspective, in which the consistency issue arises from the mismatch between the state

space specification and data sampling frequency. Simulation results illustrate and provide

supporting evidences for our analysis. We briefly discuss these aspects in order next.

First, when the recovery works, the consistency of recovery results associated with differ-

ent state space specifications is the general requirement that these results arise from the same

underlying market. As an illustration, when several states of the first specification corre-

spond to a single (consolidated) state of the second specification, the transition probabilities

recovered under the the first specification for these states also need to correspond to the

transition probability recovered under the second specification concerning the single state.

Building upon this characterization, we construct general consistency conditions for different

state space specifications that are subject to the same underlying market and observed asset
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price data.

Second, because the state space specification is not observed and hence needs to be

presumed prior to the recovery, satisfying consistency conditions presents a key criterion

to evaluate a recovery process. We show that the recovery consistency conditions hold if

and only if every state in the first specification that corresponds to a single state in the

second specification is identical in the underlying market. Furthermore, this necessary and

sufficient condition for recovery consistency is universal in the sense that it applies to different

(original, generalized, and approximate) versions of the recovery paradigm. This necessary

and sufficient condition is intuitive. It asserts that only when states are indistinguishable by

the asset market can they be aggregated and consolidated into a single state that is consistent

with and hence is consistently recovered from the given price data. Evidently, this necessary

and sufficient condition is strong because in general no two states are indistinguishable in

the underlying market.1 This finding identifies a restrictive nature of the recovery paradigm

with respect to consistency.

Third, a continuous-time formulation of the recovery paradigm offers insights into the

nature of the recovery consistency issue. In continuous settings, the underlying market

and asset price dynamics follow continuous-time processes. The recovery then amounts to

uniquely determining the governing parameters of these processes from price data. As an

illustration, when the underlying dynamics are slow (or fast) moving, data need to be sampled

at an adequate frequency to correctly reveal the market volatility. In practice, the sampling

frequency in the the recovery implementation is dictated by the price data availability and

hence is subjectively chosen by analysts before the underlying dynamics are recovered. As a

result, when the unobserved underlying market dynamics are not compatible with the price

data sampling frequencies that are subjectively chosen by different analysts, the associated

recovered dynamics by analysts can be inconsistent with each other and distorted from the

underlying dynamics.

The elegant formulation of the Recovery Theorem has renewed interests and scrutinies

in the recovery literature. The empirical supports of the Recovery Theorem have been

1Because asset market is assumed to be complete in Ross’s recovery, indistinguishable states are not due
to incomplete markets.
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mixed. Key assumptions underlying the Recovery Theorem are found to impose a strong

constraint on the persistence of the underlying stochastic discount factor (SDF). This analysis

is built upon the decomposition of the SDF growth into a permanent and a transitory

components (Alvarez and Jermann, 2005). Conceptually, the Recovery Theorem’s time-

separable and time-homogeneous assumptions imply that only the transitory component

of the SDF can be unambiguously determined so that the recovered SDF is close to the

underlying SDF only when the latter is highly transitory. However, long-term asset (bond

and equity) price data implicate a highly persistent underlying SDF, calling into question

the empirical content of the Recovery Theorem’s assumptions as in Borovička et al. (2016)

and Hansen and Scheinkman (2016) and raising their counterfactual implications on asset

prices as in Bakshi et al. (2018) and Jackwerth and Menner (2020). Qin et al. (2018) further

evaluate recovery assumptions and results against respectively options on T-bond futures

and bond price data, Audrino et al. (2021) investigate the predictive power of the recovered

distribution, and Christensen (2017) provides an empirical framework to analyze SDF’s

permanent and transitory components. Complementing and supporting this literature, the

consistency issue identified in the current paper presents a methodology challenge for the

recovery paradigm that prevails independent of the price data quality and empirical merits of

the assumptions needed for the recovery process. Altogether, these results indicate two (non

mutually exclusive) possibilities. First, surveys remain the direct and informative channel

to learn about investors’ beliefs and their rich and complex contingent investment decisions

as demonstrated by Giglio et al. (2022). Second, under some weak assumptions on market’s

behaviors, asset price data can only provide us with useful bounds on market’s expectations

as demonstrated by Martin (2017) and Gormsen and Koijen (2020).2

Several conceptual advances and theoretical extensions of the Recovery Theorem have

been proposed. Carr and Yu (2012) demonstrate a unique recovery in a continuous state-

time setting if the underlying state variables follow bounded stochastic processes. Walden

(2017) generalizes the recovery to settings with an extended support of the state dynam-

ics. Dubynskiy and Goldstein (2013) emphasize the consequential role and fragility of the

2Otherwise, one has to rely on adopting specific parametric models to estimate market’s expectation and
preferences from price data.
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imposition of boundary conditions on the recovered quantities. Qin and Linetsky (2016) ex-

tend Ross’s recovery to continuous-time Markov processes. Huang and Shaliastovich (2014)

consider recovery in a recursive utility framework. Dillschneider and Maurer (2019) dis-

cuss the Perron-Frobenius operator theory in recovery. Martin and Ross (2019) discuss the

relationship between the recovered time preference and the unconditional expected return

on long-maturity bonds. Jensen, Lando and Pedersen (2019) relax the time homogeneous

assumption and substantially generalize the Recovery Theorem’s premise to allow for grow-

ing state spaces. Importantly, by quantifying the recovery process as a system of nonlinear

equations, this generalized recovery approach enables an analytical characterization of the

recovery’s success (and impossibility) as an event of measure one (and zero). Building on

this literature, our paper considers both discrete and continuous settings and examines the

recovery consistency issue for both Ross’s and generalized recovery. Recall that the recovery

is consistent only for a specific set of market configurations, where the states in one state

space specification corresponding to a single state in the second specification are identical.

Therefore, following the generalized recovery’s analytical characterization, the consistency

issue arises with measure one in the recovery implementation process.

The current paper is organized as follows. Section 2 briefly describes Ross’s recovery

and the generalized recovery approaches in a discrete setting and discusses the consistency

aspect of the recovery process. Section 3 analyzes the consistency of the Recovery Theorem.

Section 4 analyzes the consistency of the generalized recovery. Section 5 analyzes the recovery

consistency in continuous settings. Section 6 concludes. The attached Internet Appendix

presents technical derivations omitted from the main text.

2 Recovery Theorem: Preliminaries

We first briefly describe the basic and extended setups of the recovery paradigm, before

discussing various aspects of the recovery implementation.
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2.1 Discrete State-Time setting

Consider a no-arbitrage pricing framework in complete markets and discrete state and time

setting. The pair (i, t) specifies the state and time, with i ∈ S ≡ {1, . . . , S} and t ∈

{0, . . . , T}. Let Pit(x) be the price at the state and time (i, t) of a state-dependent payoff

realized at t + 1 ≤ T and denoted by vector x = (x1, . . . , xS). The no-arbitrage pricing of

the payoff in the physical (i.e., data-generating) measure is,

Pit(x) = Eit [Mt,t+1(i, j)xj] , or Pit(x) =
S∑
j=1

pt,t+1(i, j)Mt,t+1(i, j)xj, (1)

where pt,t+1(i, j) denotes the transition probabilities in the physical measure from state i at

t to state j at t+1, and Mt,t+1 is the stochastic discount factor (SDF) growth, for the period

from t to t+ 1. The recovery of the physical distribution of states and risk preference from

asset prices relies on the following assumptions.

Assumptions:

A1. The preference is time-separable, or the SDF growth has the following functional form:

Mt,t+1(i, j) = δ
Mj

Mi
, ∀t ∈ {0, . . . , T − 1}, ∀i, j ∈ S, where δ is a constant parameter and

Mi is a function of state i (but not time).

A2. The state transition dynamics are time-homogeneous, or the transition probabilities

in the physical measure are time-independent: pt,t+1(i, j) = pi,j, ∀t ∈ {0, . . . , T − 1},

∀i, j ∈ S.

Ross (2015) formulates and motivates (i) the first assumption from an economic perspec-

tive of a representative agent’s time-separable utility function, and (ii) the second assumption

from a statistical perspective of Markovian risk dynamics. Accordingly, δ and Mi character-

ize respectively the time discount factor and marginal utility of the representative agent.

Ross’s Recovery

We consider a specific contract in complete financial markets whose payoff in state j equals

the inverse of marginal utility 1
Mj

, j ∈ {1, . . . , S}. On one hand, given the time-separable
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preference (Assumption A1), the pricing equation (1) applied on this contract in the physical

measure reads,3

Pit

Å
1

M

ã
= Eit

ï
δ
Mj

Mi

1

Mj

ò
=

S∑
j=1

pt,t+1(i, j)δ
Mj

Mi

1

Mj

= δ
1

Mi

S∑
j=1

pt,t+1(i, j) = δ
1

Mi

= δxi,

(2)

or,

Eit [Mt,t+1(i, j)xj] = δxi, xj =
1

Mj

, ∀j ∈ {1, . . . , S}. (3)

This equation system formalizes a direct implication of Assumption A1 on the recovery pro-

cess that when preferences are time-separable, the inverse marginality utilities {xi} constitute

an eigenvector of the SDF.

On the other hand, given the state i at time t ∈ {0, . . . , T − 1}, let Aij be the current

price of the one-period Arrow-Debreu (AD) asset that is contracted on the initial state i

and offers a unit payoff if the next-period state is j ∈ {1, . . . , S}, and zero payoff otherwise.

The above contract has an identical payoff to a portfolio of xj = 1
Mj

units of j-th AD

asset, j ∈ {1, . . . , S}. Therefore, its current pricing is Pit(x) =
∑S

j=1Aijxj. Identifying this

contract’s price with the one obtained in (2) implies a key recovery equation,

∑
j∈S

Aijxj = δxi, with xj =
1

Mj

,∀i, j ∈ S, or Ax = δx, (4)

where A denotes the S × S matrix of one-period AD asset prices, and x is the S × 1 vector

of inverse marginal utilities. The time-homogeneity assumption A2 assures that both A and

x are time-invariant. Conceptually, this equation indicates that the time discount factor

and the inverse of marginal utilities are respectively the eigenvalue and eigenvector of the

one-period AD price matrix A. The absence of arbitrages assures that the prices of all AD

assets are strictly positive. An application of Perron-Frobenius theorem implies that there

exists a unique eigenvector of the AD price matrix, whose elements are strictly positive and

is associated with the dominant eigenvalue.4 That is, only one eigenvector of the AD price

3To obtain this equation, we substitute Mt,t+1(i, j) = δ
Mj

Mi
= δ xixj (Assumption A1) and xj = 1

Mj
(inverse

marginal utility contract), ∀i, j ∈ S, into the pricing equation (1).
4Both eigenvectors and marginal utilities are determined only up to a multiplicative factor. Therefore, the
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matrix qualifies the positivity criterion of marginal utilities {xj}. The unambiguous recovery

of the representative agent’s preference then amounts to determining this unique dominant

eigenvector of the AD price matrix Ross (2015). The transition probability pt,t+1(i, j) from

the current state i to a state j next period then follows from the pricing equation (1) for AD

assets in the physical measure

Aij = Eit [Mt,t+1(i, s)1j(s)] =⇒ pt,t+1(i, j) = δ−1Aij
Mi

Mj

= δ−1Aij
xj
xi
, (5)

where the indicator function 1j(s) denotes the payoff of AD asset Aij.

Empirically, in financial markets at time t, we do not observe the price A`j of AD assets

that are contracted on initial states ` different from the current state at t. However, As-

sumption A2 on the time-homogeneity of the state transition dynamics enables an inference

of the entire AD price matrix needed in the recovery (4). Let Aτ ;ij be the current price of

τ -period AD asset contracted on the current state i that offers a unit payoff if the state in τ

periods is j and zero payoff otherwise. Prices {Aτ+1;ij}, j ∈ S, of (τ + 1)-period AD assets

contracted on the same current state i are obtained from rolling over τ -period AD assets

{Aτ ;ij} for one more period. Noting that the one-period AD price matrix is time-invariant,

assembling these pricing equations recursively for τ ∈ {1, . . . , T} yields,


A2;i1 . . . A2;iS

A3;i1 . . . A3;iS

... . . .
...

Aτ+1;i1 . . . Aτ+1;iS


︸ ︷︷ ︸

≡Aτ+1

=


Ai1 . . . AiS

A2;i1 . . . A2;iS

... . . .
...

Aτ ;i1 . . . Aτ ;iS


︸ ︷︷ ︸

≡Aτ

×


A11 . . . A1S

...
. . .

...

AS1 . . . ASS


︸ ︷︷ ︸

≡A

,
(6)

where the one-period AD price Aij is the abbreviated version of the full notation A1;ij, ∀i, j.

By definition, both matrices Aτ and Aτ+1 store price data of AD assets contracted on the

same current state i, and hence are observable from financial markets. When enough price

data is collected, the system (6) of linear equations solves for the one-period AD price matrix

uniqueness (up to a multiplicative factor) of a positive eigenvector implicates a unique (up to a multiplicative
factor) set of marginal utilities in Ross’s recovery.
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A,5 which is input to equation (4) in the recovery process.

To summarize, Ross (2015)’s recovery relies on both the time-homogeneity of state tran-

sition dynamics and the time-separability preference. These two assumptions effectively

result in a two-stage implementation of Ross’s recovery that consists of (i) the inference of

the entire AD price matrix (6), and (ii) the solution to recovery equations (4). The recov-

ery identifies the dominant eigenvalue and eigenvector of the AD price matrix respectively

with the time discount factor and inverse marginal utility vector (4). Then, the one-period

transition probabilities in the physical measure are recovered using (5).

Generalized Recovery

The basic recovery approach is both ambitious and intricate. On one hand, it aims to recover

the transition probability in the physical measure between every two perceived states of the

economy. On the other hand, it requires the inference of the entire price matrix of AD assets,

relying on the time-homogeneity of the state transitions (Assumption A2). Such an inference

is challenging because AD assets with initial states different from the actual current states are

not observed in financial markets, and the time-homogeneity assumption rules out interesting

dynamics of the state space. Jensen, Lando and Pedersen (2019) (referred to as JLP (2019)

hereafter) observe these important limitations, tackle them by relaxing Assumption A2 on

the time-homogeneity and establish a generalized version of the recovery. By eliminating

a strong requirement for the recovery, the generalized recovery significantly widens the set

of recoverable state space dynamics while focusing on the probabilities of the transitions

exclusively from the actual current state of the economy and the marginal utilities.

Because the generalized recovery works exclusively with the current state (at t = 0), for

specificity we name the current state the first state (i = 1). The pricing of the τ -period

AD assets {Aτ ;1j}, for {j ∈ S}, implies a relation between AD prices and the corresponding

5In subsequent sections, we refer to, and discuss in depth, the case in which the numbers of unknown AD
prices and pricing equations are equal as the just-identified recovery, and the case in which the number of
unknown AD prices is less than the number of pricing equations as the best-fit recovery.
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transition probabilities,6

Aτ ;1j
1

Mj

= δτp0,τ (1, j)
1

M1

, ∀j ∈ S, τ ∈ {1, . . . , T}. (7)

Consequently, the summation over all final states j’s, together with the condition
∑

j p0,τ (1, j) =

1, generates the key equation system for the generalized recovery,

∑
j∈S

Aτ ;1j
M1

Mj

= δτ , or Aτ ;11 +
S∑
j=2

Aτ ;1j
M1

Mj

= δτ , ∀τ ∈ {1, . . . , T}, (8)

which determines the time discount factor δ and risk preferences
¶
Mj

M1

©
, j ∈ {1, . . . , S}.

Generalizing (5), the transition probability from the current state to any state j at time τ

then follows from (7)

p0,τ (1, j) = δ−τAτ ;1j
M1

Mj

, j ∈ {1, . . . , S}, τ ∈ {1, . . . , T}. (9)

Note that in contrast to Ross’s recovery, the generalized recovery employs price data of

all T available horizons but limits to the initial state being the actual current state {1}.

The generalized recovery centers on the counting arguments concerning the system (8) of S

unknowns
¶
δ, M1

M2
, . . . , M1

MS

©
and T nonlinear equations (one for each value of τ in {1, . . . , T}).7

When the number of unknowns is greater than or equal to that of equations, S ≥ T , there are

multiple solutions of this nonlinear equation system in general, ruling out an unambiguous

(unique) recovery of the transition probabilities, time and risk preferences. Intuitively, in this

case, limited price data are consistent with multiple possible configurations of preferences

and beliefs of the representative agent in the economy. When S < T , the system does

not have a solution in general, also ruling out a successful recovery. However, JLP (2019)

crucially observe that when AD price data arise from a no-arbitrage asset pricing model

consistent with a time-separable preference (Assumption A1), the system (8) has a unique

6To arrive at this relationship, note that the pricing of τ -period AD assets is, Aτ ;1j = E0

î
δτ

Msτ

M1
1j(sτ )

ó
=

p0,τ (1, j)δτ
Mj

M1
, where the indicator function 1j(sτ ) denotes the payoff of AD asset Aτ ;1j .

7Because SDF can only be determined up to a multiplicative constant, the recovery process concerns only

the ratios of marginal utilities
¶
M1

M2
, . . . , M1

MS

©
. Equivalently, we can normalize the marginal utility in the

first state to be one, M1 = 1, without loss of generality.
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solution. Intuitively, in this case, price data are redundant and also consistent because they

arise from the same underlying market model. As a result, data redundancy does not lead

to inconsistencies in the solution of the system (8), and the generalized recovery works.

To summarize, the generalized recovery (JLP (2019)’s Proposition 1) relaxes the time-

homogeneity requirement for the state transition dynamics to focus on recovering the tran-

sitions starting exclusively from the actual current state of the economy. This relaxation

effectively results in a one-stage implementation of the generalized recovery that solves

a nonlinear system (8) and helps address a richer set of recoverable state dynamics than

Ross’s recovery approach (4). The two approaches converge when the requirement on the

time-homogeneity of state transition dynamics is reinstated.

2.2 Discussion

In principle, the paradigm of recovery is to identify assumptions and sufficient conditions,

under which transition probabilities in the physical measure, time and risk preferences can be

uniquely recovered from asset prices observed in financial markets. In practice, the recovery

is subject to further scrutinies. Empirically, the assumptions needed for the recovery place

direct constraints on the recoverable preference specifications. Such constraints can have

testable implications and hence can be evaluated against other asset price data independently

from the recovery framework. We describe the literature’s findings about the preference

specification impacts on the recovery below. Conceptually, the recovery requires a state

space specification S for the recovery equation systems (4) and (8). Such a specification is

endogenous to the recovery process and can give rise to incompatible recovery results when

these equation systems are implemented under different state space specifications. We briefly

discuss various implications of state space specifications on the recovery next, deferring a

formal and detailed analysis to subsequent sections.

Preference Specifications

The key feature of the basic recovery is that the recoverability is strongly related to an eigen-

value problem of the pricing kernel and the existence of its unique all-positive (dominant)
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eigenvector (4) when recovery assumptions are upheld. However, while the time-separable

preference assumption implies that the inverse marginal utilities form an eigenvector of the

SDF, the inverse does not necessarily hold. Consider the Alvarez and Jermann (2005)’s de-

composition of the SDF growth into a permanent (MP ) and a transitory (MT ) components,

Mt,t+1 = MP
t,t+1M

T
t,t+1, t ∈ {0, . . . , T − 1}.

By definition, the permanent component of SDF is a martingale in the physical measure, so

its growth satisfies Et
[
MP

t,t+1

]
= 1, ∀t ∈ {0, . . . , T −1}. When combined with the eigenvalue

problem (2) characteristic to a time-separable preference, this martingale property indicates

the following decomposition,8

MP
t,t+1(i, j) =

Mt,t+1(i, j)xj
δxi

, MT
t,t+1(i, j) =

δxi
xj
, ∀i, j ∈ S. (10)

This decomposition shows that it is the transitory component MT of the SDF that satisfies

and has a time-separable functional form of Assumption A1, even though we started out with

the time-separability characteristic equation (2) presumed on the full SDF M . Intuitively,

while the time-separability implies that the inverse marginal utilities form an eigenvector

of the SDF, the inverse is not necessarily true. That is, the eigenvalue problem (2) may

implicate only the transitory component of the SDF, and the recovery principle obtains MT

uniquely.

Borovička et al. (2016) then raise and investigate an important question on whether the

SDF is sufficiently transitory, M ≈ MT , so that the distortion stemming from the time-

separability specification is minor and the recovery process works reasonably well. Their

investigation employs a property that the inverse growth of the transitory component of

the SDF equals the return on the long-term bond,
MT
t

MT
t+1

= B∞t+1.
9 Therefore, if indeed the

8As a check, the permanent component satisfies Et
[
MP
t,t+1

]
= 1

δxi
Et [Mt,t+1(i, j)xj ] = 1 by virtue of (2).

9On one hand, Alvarez and Jermann (2005) show that given the existence of β ∈ R such that

limk→∞
Et[Mt,t+k]

βk
∈ (0,∞), the permanent component of the SDF is MP

t = limk→∞
Et[Mt+k]
βt+k

. On the
other hand, the return on the long-term bond in one-period holding is defined as the growth in the current

value of one dollar payable in long-term future, B∞t+1 = limk→∞
Et+1[Mt+1,t+k]
Et[Mt,t+k]

= Mt

Mt+1
limk→∞

Et+1[Mt+k]
Et[Mt+k]

.

Using the permanent SDF component obtained above, we have B∞t+1 = Mt

Mt+1
limk→∞

Et+1[Mt+k/β
t+k]

Et[Mt+k/βt+k]
=
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SDF Mt is mostly transitory, then its growth Mt,t+1 almost perfectly (negatively) correlates

with the long-term bond return. As a result, among all traded assets, the long-term bond

should offer the largest (absolute) Sharpe ratio. The empirical fact that the long-term bond’s

Sharpe ratio is not superior (in the absolute value) compared to that of other financial asset

classes then rules out the dominance of the transitory component MT in the SDF. In sum,

Borovička et al. (2016)’s analysis indicates a counterfactual empirical aspect of the time-

separable preference specification assumed in the recovery approach. The analysis applies

to both original and generalized versions of the recovery because both versions make use of

the time-separable preference assumption.

State-Space Specifications

Given the required assumptions, the recovery implementation proceeds from price data for

T horizons and a specification of S states in systems (4) and (8). Price data and their

extent T are observable and amenable to the data availability, whereas the specification S

of the objective underlying market’s state space is not observed and is up to the analyst’s

discretion. It is then important to understand the impacts of the state space specification on

the recovery and map results recovered under different specifications. A thought experiment

demonstrates such a mapping. Consider two analysts adopting two different and subjective

state space specifications, S = {1, . . . , S} of S states and S = {1, . . . , S} of S states.

The comparison of recoveries results under different specifications involves several aspects,

including the consolidation of the state space and the consistency of recovery results. To

illustrate these aspects at first, we employ a simple example (Example 1 and Figure 1 below).

Consolidation: Without loss of generality, let S < S. We refer to S as the original speci-

fication and S as the consolidated specification denoted by an overline sign. A consolidated

state j ∈ S is characterized either as (i) a single consolidated state if it is identical to an

original state j ≡ j, or (ii) a coupled consolidated state if it is composed of multiple original

states j ⊃ j. In the analysis, these specifications are assumed and adopted by different

analysts attempting to recover the underlying preferences and state transition probabilities

Mt

Mt+1

MP
t+1

MP
t

=
MT
t

MT
t+1

, where we have used the decomposition Mt = MP
t M

T
t in the last equality.
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of the market. It is important to note that our references of the original and consolidated

specifications are purely conventional and are subjective specifications adopted by different

analysts.

Example 1 (State Space Illustration) The first (original) state space specification has

three states S = {1, 2, 3}, and the second (consolidated) has two states S = {1, 2}. The first

consolidated state is identical to the first original state, 1 = {1}, i.e., 1 is a single state. The

second consolidated state is composed of the two remaining original states, 2 = {2, 3}, i.e.,

2 is a coupled state.

Figure 1: An illustration of different state space specifications.

To reconcile the recoveries based on different specifications, for a single state, we directly

compare the recovery results under S and S. For a coupled state, a consolidation process

is needed for the comparison. We first aggregate the recovery results over all states under

specification S that correspond to the coupled state under S before making the comparison.

For the specific Example 1, the consolidation and comparison are as follows. We directly

compare the recovery results (i.e., transition probabilities and marginal utilities) for the

single state {1} under the original specification S and 1 under the consolidated specification

S, and aggregate and compare the recovery results for states {1, 2} under S and the coupled

state 2 under S.

Consistency: Recoveries under different specifications S and S are subject to consistency

criteria, given that these recoveries address the same underlying objective market’s transition

probabilities and risk and time preferences. Intuitively, the recovery consistency amounts
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to recovering identical values for (i) time discount factors, (ii) marginal utilities in single

states, and (iii) probabilities for transitions among single states (and coupled states, after

the appropriate consolidation is performed). The recovery consistency conditions can be

obtained by comparing different state space specifications and the associated AD prices

observed and perceived by respective analysts. For an illustration, consider the specific

Example 1 and suppose that the current state is 1 (perceived by the first analyst), which is

also 1 (perceived by the second analyst). The consistency conditions for the time discount

factors and transition probabilities recovered by the two analysts are implied directly from

their subjective state space specifications S and S (per Figure 1)

δ = δ, pt,t+1(1, 1) = pt,t+1(1, 1), pt,t+1(1, 2) = pt,t+1(1, 2) + pt,t+1(1, 3), (11)

for all t. The consistency conditions for the recovered marginal utilities are implied from

the pricing of traded assets. The two analysts observe AD asset prices traded in markets

and interpret these contractual prices in accordance with their subjective specifications.

Specifically, because current states are identical for analysts (1 = {1}), they interpret an

identical AD price contracted on these states A1 1 = A11. As non-current states are different

for analysts (2 = {2, 3}), they interpret different AD prices contracted on these states.

Instead, these prices are related as A1 2 = A12 + A13. Substituting AD prices from the

pricing equation (7) into this AD asset price relation implies the consistency condition for

the recovered marginal utilities,

M2

M1

=
M2

M1
pt,t+1(1, 2) + M3

M1
pt,t+1(1, 3)

pt,t+1(1, 2) + pt,t+1(1, 3)
. (12)

We refer to Internet Appendix A.1 and A.2 for a formal derivation of the general consistency

conditions for Ross’s and generalized recovery approaches.

When the consistency conditions are violated, the two sets of recovered quantities are

incompatible, so that at least one of them is also incompatible with the set of objective

underlying parameters of the market. Since these objective underlying parameters are not

observed, without additional falsification criteria it is impossible to rule out (or rule in) either
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specifications employed by the two analysts. The inconsistency between the two recovery

specifications may also give rise to arbitrage opportunities between recovered quantities, the

violation of probability law, and negative time discount factors. Therefore, the consistency

conditions are crucial in relating recovery results under different state space specifications.

They present a criterion to evaluate a recovery approach.

Best-fit recoveries: State space specifications are essential to the recovery because they

determine the number of unknown parameters to be recovered. Different specifications con-

cern different sets of unknowns, so a comparison between specifications involves a change

in the numbers of unknowns. Given the same price data availability and constraints that

all analysts face, it is impossible almost surely that two analysts with different perceived

specifications are subject to the same balance of data-driven constraints versus unknowns in

the recovery systems (4) and (8). It is the exact nature (i.e., counting arguments) of these

systems that gives rise to both an unambiguous (unique) recovery when the above balance

prevails and specification-dependent (incompatible) recoveries when this balance does not

hold.

The alleviation of strict counting-argument constraints on the exact recoveries requires a

flexible accommodation of different amounts of data inputs and unknown parameters. Along

this approach, a best-fit recovery transforms and interprets the recovery systems (4) and (8)

as regression equation systems (Sections 3.3 and 4.2). For a specification, these regression

systems employ a flexible number of constraints (data inputs) to uniquely determine a best-fit

set of unknown parameters of the specification (recovery results). For the specific Example 1,

the just-identified recovery takes only three data horizons (T ∈ {1, 2, 3}) under the original

specification S = {1, 2, 3} and only two (T ∈ {1, 2}) under the consolidated S = {1, 2}

(see (6)). Best-fit recoveries flexibly allow as many horizons as data sources provide, which

also allows us to address an important conceptual question on whether observing an infinite

amount of error-free price data always assures successful recoveries.
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3 Ross’s Recovery

This section presents a formal analysis and simulation results of various identification aspects

of the original Ross’s recovery. Our analysis focuses on the comparison and consistency of

the recovery results under different state space specifications of the same underlying risk

pricing model. Section 3.1 introduces the comparative analysis setup, which are employed

to analyze Ross’s original recovery approach in Section 3.2, its best-fit version in Section 3.3,

and simulation results in Section 3.4.

3.1 Comparative analysis setup

The comparative analysis concerns two different analysts. The first analyst perceives an

original state space specification S ≡ {1, . . . , S} of S states. The second analyst perceives a

consolidated state space specification S ≡ {1, . . . , S} of S states. For the sake of clarity, we

assume that the consolidated state space specification is netted in the original specification

in the sense that every consolidated state j is composed of Sj original states with Sj ≥ 1,

S =
S∑
j

Sj.

As a result, for the netted partitions, the consolidated specification is associated with unam-

biguously less (coarser) information about the structure of the state space than the original

specification in our analysis,10

S ⊂ S and S < S. (13)

The analysts implement their recovery procedures given their respective state space specifi-

cations S and S.

Given any consolidated state j ∈ S, an original state k either is a component state of

j (k ⊂ j) or does not belong to j (k 6⊂ j). This binary relationship is quantified by an

10Our main findings on the comparability of recovery results under different state space specifications hold
when these specifications are non-netted.
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indicator coefficient Ck j defined as follows,

 Ck j = 1 if k ∈ S is a component state of j,

Ck j = 0 if k ∈ S is not a component state of j,
∀j ∈ S. (14)

These indicator coefficients together form an S×S indicator matrix C that fully characterizes

the mapping from the original specification S to the consolidated specification S. For the

specific Example 1, the indicator matrix that relates S = {1, 2, 3} and S = {1, 2} is

1 = {1}

2 = {2, 3}

 =⇒ C =


1 0

0 1

0 1

 . (15)

3.2 Ross’s Recovery: Just-Identified Approach

As described in Section 2.1, the original implementation of Ross (2015)’s recovery consists of

two stages, i.e., inferring the AD matrix from price data and then solving for the dominant

eigenvector and eigenvalue of that matrix. This just-identified recovery approach employs

just enough AD price data to infer the entire AD matrix in the first stage (equation (6) and

Section 2.2).

First stage: For the original specification of S states, observed price data for S+1 horizons

τ ∈ {1, . . . , S+ 1} contained in price matrices Aτ and Aτ+1 (6) suffice to solve for the S×S

AD matrix A. For the consolidated specification of S states, observed price data for S + 1

horizons suffice to solve for the S × S consolidated AD matrix A. That is,

Original system: Aτ+1︸ ︷︷ ︸
S×S

= Aτ︸︷︷︸
S×S

A︸︷︷︸
S×S

; Consolidated system: Aτ+1︸ ︷︷ ︸
S×S

= Aτ︸︷︷︸
S×S

A︸︷︷︸
S×S

. (16)

The original specification requires S+1 horizons (τ ∈ {1, . . . , S+1}), while the consolidated

specification requires S + 1 horizons (τ ∈ {1, . . . , S + 1}), of price data in the just-identified

recovery approach. As the consolidated specification is associated with a coarser partition of
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the state space compared to the original specification, it requires less data for the recovery.

To relate the recovery processes under the two specifications, consider a consolidated

state j ∈ S that is composed of several original states j ∈ S. In the absence of arbitrage

opportunities in asset markets, given the same initial current state i, the price of an AD

asset paying off in the consolidated state j (perceived by the second analyst) must equal the

sum of prices of AD assets paying off in the associated original states j (perceived by the

first analyst),

Aτ ;i j =
∑
j⊂j

Aτ ;ij, ∀τ ∈ {1, . . . , T}. (17)

Assembling these no-arbitrage relations for all consolidated states j connects the observed

price matrices (6) associated with the original and consolidated specifications as follows,

Aτ︸︷︷︸
S×S

=
î
IS×S OS×(S−S)

ó︸ ︷︷ ︸
S×S

Aτ︸︷︷︸
S×S

C︸︷︷︸
S×S

; Aτ+1︸ ︷︷ ︸
S×S

=
î
IS×S OS×(S−S)

ó︸ ︷︷ ︸
S×S

Aτ+1︸ ︷︷ ︸
S×S

C︸︷︷︸
S×S

, (18)

where S × S matrix
î
IS×S OS×(S−S)

ó
is composed of two blocks11 and acts to drop the

extra horizons τ ∈ {S+ 2, . . . , S+ 1} of price data not needed in the just-identified recovery

under in the consolidated specification (see (16)). The S × S indicator matrix C, defined in

(14), maps out the consolidation between two specifications S and S.

Second stage: Ross (2015)’s recovery solves and identifies the dominant eigenvector of the

AD matrix with the (inverse of) marginal utilities in the second stage (4). Specifically, the

recoveries under original and consolidated specifications concern the dominant eigenvectors

of matrices A and A in (16). Therefore, relating these dominant eigenvectors is important

to compare and reconcile recovery results under the respective specifications S and S. To

ease the exposition, we next present basic arguments to achieve a key condition to relate and

reconcile these dominant eigenvectors. We relegate the technical derivation of the necessary

and sufficient nature of this to Internet Appendix B.1.

Relating Ross’s recovery results under different specifications starts with multiplying the

11As the notation indicates, the first block IS×S is an identity matrix, the second block OS×(S−S) is a
matrix of all zero entries.
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matrix S × S matrix
î
IS×S OS×(S−S)

ó
to the left, and the indicator matrix C to the right,

of the original system in (16),î
IS×S OS×(S−S)

ó
Aτ+1C =

î
IS×S OS×(S−S)

ó
AτAC. (19)

Using the consolidation (18), above equation becomes

Aτ+1 =
î
IS×S OS×(S−S)

ó
AτAC. (20)

Let us denote a S × S matrix B that satisfies AC = CB. As a result, above equation is

further simplified to

Aτ+1 =
î
IS×S OS×(S−S)

ó
AτCB = AτB, (21)

where the second equality arises from (18). Comparing (21) with the the consolidated system

in (16) indicates that the matrix B introduced above is identical to the AD price matrix A

in the consolidated identification. As a result, the defining identity of B (introduced below

(20)) must also be satisfied by A, or

A︸︷︷︸
S×S

C︸︷︷︸
S×S

= C︸︷︷︸
S×S

A︸︷︷︸
S×S

. (22)

Recall that AD matrices A and A (16) are inferred from objective price data, whereas the

indicator matrix C (14) arises exclusively from analysts’ subjective specifications. Given

price data, not every indicator matrix C satisfies (22). Equivalently, we observe that not

every two exogenous specifications of the state space are simultaneously consistent with the

observed price data. Equation (22) presents an important condition for two state space

specifications to be consistent in the recovery process. The specific Example 1 illustrates

this observation. The substitution of indicator matrix C from (15) into (22) generates the
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following consistency conditions
A11 = A1 1; A12 + A13 = A1 2

A21 = A2 1; A22 + A23 = A2 2

A31 = A2 1; A32 + A33 = A2 2.

(23)

The first two conditions above relate the AD prices observed and interpreted by the two

analysts in Figure 1’s consolidation scheme 1 = {1} and 2 = {2, 3}, whereas other conditions

have more subtle implications. They require that A21 = A31 as both of which are identified

with A2 1, and A22 + A23 = A32 + A33 as both of which are identified with A2 2. These

conditions are both exogenous and strong to the price data. They are exogenous because

they arise from subjective state space specifications in the recovery analysis, but not data

per se. They are stringent because they have strong implications on the underlying asset

pricing model. In fact, employing the pricing equation (7), the relations of AD asset prices

(23) hold only when the original states {2} and {3} that belong to the same consolidated

state 2 are identical in the underlying market model (see also Internet Appendix B.1),

M2 = M3. (24)

Finally, from the other direction, assuming that the consistency condition (22) (or (24))

holds, we can explicitly verify the consistency of Ross’s recovery results.12 Let S×1 vector x

and S×1 vector x denote these eigenvectors. Multiplying to the right of the consistency con-

dition (22) by x and then making use of the eigenequation in the consolidated specification,

Ax = δx, we have

ACx = CAx =⇒ ACx = δCx. (25)

Comparing the last equation with the eigenequation in the original specification, Ax = δx,

indicates the following relationships between the dominant eigenquantities,

x = Cx, δ = δ. (26)

12Recall that these results are reflected in the dominant eigenvectors and eigenvalues of the AD matrices
A and A.
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The relationships confirm the consistency between Ross’s recovery results under two different

specifications when the condition (22) holds. As the dominant eigenvector represents the

inverse of marginal utilities, the first equation in (26) implies an equality between marginal

utilities in a consolidated state and all corresponding original states: xj = xj, ∀j ∈ S, ∀j ∈ j.

The second equation implies the same time discount factor recovered under the original and

consolidated specification.

We formalize the analysis above into a necessary and sufficient condition for the recovery

implementation consistency and relegate a detailed derivation to Internet Appendix B.1.

Proposition 1 Let S and S denote two state space specifications of the same objective but

unobserved market. The Ross’s recovery results obtained under the two specifications are

consistent if and only if the marginal utilities of all single states {j} under S that correspond

to a coupled state j under S are equal.

Recoveries results under S and S are consistent⇐⇒Mi = Mk, ∀i, k ∈ j, j ∈ S. (27)

This necessary and sufficient condition holds regardless of whether the current state is a

single or coupled state under the consolidated specification.

When the necessary and sufficient condition holds, the consistent recovery results can be

verified by rewriting relationships (26) explicitly using C (14),

δ = δ, Mj = M j, ∀j ∈ j, j ∈ S. (28)

That is, the underlying market model needs to have identical marginal utilities in all original

states j ∈ S that correspond to a same consolidated state j ∈ S. Qualitatively, Proposition

1 highlights the endogeneity issue inherent to the recovery. The state space specification

is not observed in the recovery process yet is consequential to the recovery results. Differ-

ent presumed specifications lead to possibly irreconcilable recovery results. Quantitatively,

Proposition 1’s necessary and sufficient condition is restrictive and can only be satisfied for a

special set of underlying market models. As a result, the recovery process is elusive and most

likely produces inconsistent results for different analysts because their presumed, subjective
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specifications most likely do not satisfy condition (27). Next, we examine whether relaxing

the exact Ross’s recovery procedure to allow for a more robust price data input can restore

the consistency in the recovery.

3.3 Ross’s Recovery: Best-Fit Approach

As briefly described in Section 2.2, the best-fit recovery employs redundant (possibly all)

price data to infer the entire AD matrix in the first stage (6) of Ross’s recovery.

First stage: For the original specification of S states, observed price data for all T available

horizons τ ∈ {1, . . . , T} contained in price matrices AT−1 and AT (6) is employed to solve

for the S × S AD matrix A. For the consolidated specification of S states, observed price

data for all T available horizons is also employed to solve for the S × S consolidated AD

matrix A. Thus, the first-stage equation system that infers the AD matrix (6) respectively

for the two specifications becomes,

AT︸︷︷︸
(T−1)×S

= AT−1︸ ︷︷ ︸
(T−1)×S

A︸︷︷︸
S×S

, AT︸︷︷︸
(T−1)×S

= AT−1︸ ︷︷ ︸
(T−1)×S

A︸︷︷︸
S×S

. (29)

Per the notation of (6), AT−1 and AT−1 contain observed prices of assets having maturities

τ ∈ {1, . . . , T − 1}, whereas AT and AT having maturities τ ∈ {2, . . . , T}.

Because there are presumably more constraint equations from redundant price data than

the number of unknowns (entries of AD price matrices) in the above systems, the least-square

(best-fit) approach is employed to infer the AD matrices,

Original system: A =
[
A′T−1AT−1

]−1
A′T−1AT ,

Consolidated system: A =
î
A
′
T−1AT−1

ó−1
A
′
T−1AT .

(30)

With all price data being employed, the best-fit approach addresses a practical but important

issue encountered in the recovery process. That is, which data should be dropped from the

recovery implementation without biases, when in principle the given price data is redundant
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for the determination of the AD price matrix associated with a state space specification.13

To relate the recovery processes under the two specifications, we observe that in the

absence of arbitrage opportunities (17), the observed price matrices associated with the

original and consolidated specifications satisfy

AT−1︸ ︷︷ ︸
(T−1)×S

= AT−1︸ ︷︷ ︸
(T−1)×S

C︸︷︷︸
S×S

; AT︸︷︷︸
(T−1)×S

= AT︸︷︷︸
(T−1)×S

C︸︷︷︸
S×S

, (31)

where the S × S indicator matrix C (14) characterizes the mapping between the two spec-

ifications. These equations simplify the just-identified equations (18) by not dropping any

price data.

Second stage: We now present basic arguments to relate the dominant eigenvectors of AD

price matrices under different state space specifications, which quantify the recovery results.

By substituting the no-arbitrage relations (31) into the best-fit solution of the consolidated

AD price matrix (30), we can express A in terms of only original price data in AT−1 and

AT ,

A =
[
C′A′T−1AT−1C

]−1
C′A′T−1ATC. (32)

By employing the recursive relation between prices at different maturities (29), the above

consolidated AD price matrix becomes

A =
[
C′A′T−1AT−1C

]−1
C′A′T−1AT−1AC. (33)

As before, let us denote a S × S matrix B that satisfies AC = CB. Thus, the expression

for the consolidated AD price matrix is simplified to

A =
[
C′A′T−1AT−1C

]−1 [
C′A′T−1AT−1C

]
B = B. (34)

As a result, the defining identity of B introduced below (20) must also be satisfied by A, or

13Recall that in the original (just-identified) recovery process, when the state space is specified with S
states, one needs only S + 1 data horizons to infer the AD price matrix in principle.
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AC = CA, which is identical to the condition (22) for the just-identified implementation of

the recovery. Assuming that this condition holds, the dominant eigenvectors and eigenvalues

of the AD matrices A and A satisfy (26), which then implies the consistency of recovery

results under two different specifications in the best-fit implementation approach.

Employing more price data does not help to loosen the restrictive and strong effects

of consistency conditions on the recovery results under different state space specifications.

Intuitively, this is because the no-arbitrage condition applies uniformly across all price data

points employed in the consolidation, as reflected in the presence of a single indicator matrix

C in (18) and (31) across various data horizons. Practically, because the AD price matrix

A under the first (original) specification S is largely exogenous to the second (consolidated)

specification S and the consolidation structure C, the condition AC = CA places equally

non-trivial consistency constraints on the best-fit as on the just-identified implementation of

the recovery process. In summary, the necessary and sufficient condition (22) and Proposition

1 also apply to the best-fit approach to Ross’s recovery, which delivers consistent results

under different state space specifications if and only if the marginal utilities of all single

states of the original specification S that correspond to a coupled state of the consolidated

specification S are equal.

3.4 Ross’s Recovery: Simulation Results

This section presents simulation evidences to illustrate Ross’s recovery process under different

state space specifications (Proposition 1). For the illustration of the state space specification

impacts on the recovery results, simulation is a valuable approach. By design, the simulation

generates perfect price data (i.e., eliminating the effect of data measurement errors on the

recovery process) and assures a single underlying market model for all subjective state space

specifications. Our simulation closely follows the thought experiment setup of Section 2.2 to

analyze and consolidate Ross’s recovery results under different specifications perceived and

employed by different analysts. The simulation steps are as follows.

Simulation Procedure: Our simulation consists of N = 20 independent random trials.

For each trial, data inputs are constructed as follows. We randomly generate (i) the time
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discount factor δ and marginal utility ratios
Mj

M1
, ∀j, from continuous uniform distributions

respectively with supports [0.8, 1] and
[
1
2
, 2
]
, and (ii) the transition probabilities as entries

of a 5× 5 random positive matrix with every row sum constrained to be one. For each trial,

we perform the following five steps and report the corresponding simulation results.

Step 1: We take as given at first the characteristics of the underlying market model: (i) the

state price specification S = {1, . . . , S}, and (ii) the time discount factor δ, the marginal

utility ratios
¶
Mj

M1

©
in every state j ∈ S, and the one-period transition probabilities {p(i, j)}

between any two states i, j ∈ S. All items in (ii) are generated in a random trial as described

above.

Step 2: Using the above knowledge of objective market model and the τ -period AD pricing

equation (9), we generate the current τ -period AD asset prices {Aτ ;1j} that pay off in all

future states j ∈ S at maturities τ ∈ {1, . . . , T}.14 From now on we disregard the knowledge

of the time and risk preferences and transition probabilities
¶
δ,

Mj

M1
, p(i, j)

©
of the objective

underlying market model and employ only the prices {Aτ,1j} generated in this step.

Step 3: Employing the original specification S and AD asset prices {Aτ,1j}, for j ∈ S and

τ ∈ {1, . . . , T}, the first analyst recovers the time discount factor, marginal utilities and

the one-period transition probabilities associated with the specification S in Ross’s recovery

process.15 Ross’s recovery process is implemented by solving (6) for the S × S one-period

AD matrix A and diagonalizing A to obtain the marginal utilities and time discount factor

from (4) and transition probability from (5). Without loss of generality, let {1} denote the

current state from the first analyst’s perspective.

Step 4: Employing the consolidated specification S and the consolidation process (17) (or

14Specifically, equation (9) gives the τ -period AD asset prices, Aτ ;1j = δτp0,τ (1, j)
Mj

M1
, in terms of the time

discount factor δ, the marginal utilities
¶
Mj

M1

©
and the τ -period transition probabilities p0,τ (1, j). Note that

the latter are computed by rolling over the one-period transition probabilities (given as the inputs in step 1)
τ times

p0,τ (1, j) =

S∑
k1

S∑
k2

. . .

S∑
kτ−1

p(1, k1)p(k1, k2) . . . p(kτ−1, j).

15We are assuming that the original state space specification S perceived by the first analyst is also
the specification of the underlying market model. This assumption is purely for convenience because the
illustration of the recovery consistency just requires that the specifications perceived by the two analysts be
different, S 6= S.
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(31)), we construct the consolidated AD asset prices {Aτ,1 j}, for j ∈ S and τ ∈ {1, . . . , T}.

Observing these prices, the second analyst then recovers the time discount factor, marginal

utilities and the one-period transition probabilities associated with the specification S in

Ross’s recovery process. That is, we repeat Step 3 while replacing the original AD asset

prices {Aτ,1j} by the consolidated AD asset prices {Aτ,1 j}, where without loss of general-

ity 1 denotes the current state from the second analyst’s perspective. For completeness,

we consider two possible (and exhaustive) scenarios concerning the current state 1 of the

consolidated specification.

Case 1: Current state 1 is a single state, i.e., it is identical to the current original state,

1 = {1} ∈ S.

Case 2: Current state 1 is a coupled state, i.e., it corresponds to several original states,

1 = {1, . . . , j} ∈ S.

Step 5: We compare the recovery results obtained in Step 3 for the original specification S

and Step 4 for the consolidated specification S and check their consistency, i.e., verifying the

holding of the consistency condition (22).

Simulation Model: Our specific simulation adopts a specification of S = 5 states S =

{1, 2, 3, 4, 5} for the underlying market model and randomly generates and takes as given

at first the time discount factor, marginal utilities, and transition probabilities (Step 1) to

generate AD asset prices {Aτ ;1j} (Step 2). The first analyst perceives the specification S,

uses these AD prices {Aτ ;1j} for T = 5 horizons τ ∈ {1, 2, 3, 4, 5} to solve for the complete

5 × 5 one-period AD matrix A (6), and diagonalizes A to recover the time discount factor

and marginal utilities (4) and transition probabilities (5) (Step 3). For every simulation

trial, these recovery results are identical to the time discount factor, marginal utilities, and

transition probability inputs of Step 1, validating Ross’s recovery approach (4) and (5).

The second analyst perceives the a 3-state specification S = {1, 2, 3}. We consider two

scenarios concerning the current state 1 of the consolidated specification.

Case 1 – single current state: {1} = {1}, 2 = {2, 3}, 3 = {4, 5},

Case 2 – coupled current state: {1} = {1, 2}, 2 = {3, 4}, 3 = {5}.
(35)
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For each case, (i) using (31), we construct the consolidated AD asset prices {Aτ,1 j}, for j ∈ S

and τ ∈ {1, . . . , T}, and (ii) using these AD prices {Aτ,1 j} for T = 3 horizons τ ∈ {1, 2, 3},

the second analyst solves for the complete 3 × 3 one-period AD matrix A (6) and then

diagonalizes A to recover the time discount factor and marginal utilities (4) and transition

probabilities (5) associated with S (Step 4).

For each case, we examine the consistency of recoveries by the two analysts by checking

whether their recovery results obtained in Steps 3 and 4 satisfy the respective consistency

conditions for that case (Step 5). Given the original and consolidated specifications (35),

these consistency conditions read (similar to (11) and (12); see also Internet Appendix A.1),

Case 1 – single current state:



δ = δ, M1 = M1,

pt,t+1(1, 1) = pt,t+1(1, 1),

pt,t+1(1, 2) = pt,t+1(1, 2) + pt,t+1(1, 3),

pt,t+1(1, 3) = pt,t+1(1, 4) + pt,t+1(1, 5).

(36)

Case 2 – coupled current state:



δ = δ, M3 = M5,

pt,t+1(3, 1) = pt,t+1(5, 1) + pt,t+1(5, 2),

pt,t+1(3, 2) = pt,t+1(5, 3) + pt,t+1(5, 4),

pt,t+1(3, 3) = pt,t+1(5, 5).

(37)

We examine the consistency of the recovery results obtained by the two analysts by checking

the holding of consistency condition (36) or (37) (Step 5).

Simulation results: For the single current state {1} = {1} (Case 1): Figure 2 plots the

difference of the recovered time discount factors (top left panel) and the difference of the

recovered transition probabilities (three remaining panels) by the two analysts. Each data

point in these graphs corresponds to one simulation trial (of totally N = 20 simulation

trials). The plotted differences are simulation counterparts of, and can be directly verified

against, the consistency conditions (36).

The top left panel of Figure 2 provides simulation evidence that the recovered time

discount factor δ and δ are not equal. Despite of being quite small in the magnitude, a

strictly non-zero difference δ − δ violates the consistency condition for the recovered time
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Figure 2: Case 1 – Single current state {1} = {1}

discount factors in (36) because by design, the simulation environment is not subject to

data measurement errors.16 The remaining panels of Figure 2 also show broadly that the

transition probabilities recovered by two analysts are inconsistent.

For the coupled current state {1} = {1, 2} (Case 2): Similar to Case 1, the top left panel

of Figure 3 provides simulation evidences that the recovered time discount factors δ and

δ are not equal. The remaining panels of Figure 3 also show broadly that the transition

probabilities recovered by two analysts are inconsistent. In summary, our simulations show

that Ross’s recovery results under two different specifications are broadly inconsistent with

each other whether the current state in the consolidated specification is a single or a coupled

state.

16Instead, our simulation indicates that Ross’s recovery procedure under the consolidated specification
tends to produce time discount factors clustered around δ ≈ 1 when the price data is generated from an
objective (original) model with δ ≈ 1.
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Figure 3: Case 2 – Coupled current state {1} = {1, 2}

4 Generalized Recovery

This section presents a formal analysis and simulation results of various identification aspects

of the generalized recovery. Our analysis again focuses on the comparison and consistency of

the recovery results under different state space specifications. The comparative analysis setup

is similar to that of the original Ross’s recovery (Section 3) with an original specification S ≡

{1, . . . , S} and a consolidated specification S ≡ {1, . . . , S}. The consolidated specification

is netted in the original one, S ⊂ S, S < S, and the associated mapping is described

by an S × S indicator matrix C (14). Our comparative analysis makes use of counting

arguments concerning the nonlinear dynamics of the generalized recovery system (8), in

contrast to the linear dynamics (4) and analysis of Ross’s recovery. Section 4.1 analyzes JLP

(2019)’s original generalized recovery approach, Section 4.2 presents a best-fit version of the

generalized recovery, and Section 4.3 shows the simulation results.
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4.1 Generalized Recovery: Exact Approach

Given an unobserved objective underlying market model to be recovered and a set of observed

asset price data, two analysts implement the generalized recovery process respectively under

their state space specifications. We consider separately two exhaustive scenarios, namely,

the current original state is a single state or belongs to a coupled state in the consolidated

specification.

Case 1: Single current state

In this case the current state is a single state. Specifically, let the first K consolidated states

be single states and the remaining consolidated state be a coupled state (with K = S − 1)

as illustrated in Figure 4,

1 = {1}, . . . , K = {K}, S = {K + 1, . . . , S}.

Let the current state be the first state, so it is a single state 1 = {1}.17 Two analysts,

Figure 4: Case 1 – The current state is a single state: 1 = {1}.

employing respectively the original and consolidated state space specifications, observe asset

price data in the market but interpret AD assets contingent on their perceived specifications.

As a result, AD asset prices observed and interpreted by the two analysts are related by the

17Example 1 illustrates this configuration when 1 is the current single state.
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no-arbitrage principle as follows (similar to (17) for Ross’s recovery), Single states j = j ∈ {1, . . . , K}: Aτ ;1 j = Aτ ;1j,

Coupled state S: Aτ ;1 S =
∑S

j=K+1Aτ ;1j,
∀τ ∈ {1, . . . , T}, (38)

where Aτ ;1j and Aτ ;1 j denote the prices of AD assets contingent respectively on states j and

j of the original and consolidated specifications at time τ . While the first analyst solves the

generalized recovery system (8) associated with the original specification, the second solves

the following version of the same system but adapted to the consolidated specification,

K∑
j=1

Aτ ;1 j
M1

M j

+ Aτ ;1S
M1

MS

= δ
τ
, ∀τ ∈ {1, . . . , T}. (39)

Consistency conditions: These conditions are a set of relations that time and risk pref-

erences and transition probabilities recovered for consolidated states need to satisfy to be

consistent with their counterparts recovered for original states. The consistency conditions

assure the compatibility and unambiguity of recovery results. We list and discuss these

consistency conditions next and relegate their derivations to Internet Appendix A.2. The

consistency conditions are,

time discount factor : δ = δ, (40)

transition probability :

 p0,τ (1, j) = p0,τ (1, j),

p0,τ (1, S) =
∑S

`=K+1 p0,τ (1, `),

∀j = j ∈ {1, . . . , K},

∀τ ∈ {1, . . . , T},
(41)

marginal utilities :


Mj

M1

=
Mj

M1
,

MS

M1

=
∑S

`=K+1
p0,τ (1,`)∑S

h=K+1 p0,τ (1,h)

M`

M1
,

∀j = j ∈ {1, . . . , K},

∀τ ∈ {1, . . . , T}.
(42)

Discussion: Note that the marginal utility ratio
Mj

M1
is the state price density of state j

under the original specification S (and
MS

M1

the state price density of state S under the

consolidated specification S).18 The condition (42) requires that the recovered state price

18The pricing of AD asset implies that the ratio of marginal utilities equals the ratio of the AD price and
the transition probability, δ

Mj

M1
=

A1j

p0,1(1,j)
, i.e., the price density.
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density of the coupled state S be equal to the weighted average of the recovered state price

density of the component original states, with the weights being the normalized probabilities,

in order for the generalized recovery to be consistent under two different specifications.

This consistency condition is intuitive. When ` is the more (less) likely state among all

original states {K+1, . . . , S}, i.e., the normalized probability p0,τ (1,`)∑S
h=K+1 p0,τ (1,h)

is large (small),

the recovered state price density M`

M1
necessarily represents a more (less) important part in

enforcing the consistency with the recovered state price density
MS

M1

of the coupled state S.

We examine the tensions between consistency conditions and the exact generalized recovery

approach next.

Tensions: We now examine the tensions between consistency conditions and the generalized

recovery approach when the current state is a single state 1 = {1} illustrated in Figure 4.

Intuitively, on one hand, the consistency conditions (40)-(42) show that generalized recov-

ery results under the original specification unambiguously imply unique generalized recovery

results under the consolidated specification when these recovery results are consistent. This

is due to the fact that the consolidated is netted in the original specification by construction

(see (13)). On the other hand, recovery results under either specification are obtained from

solving the nonlinear equation system adapted to the respective specification. These equa-

tion systems for different specifications are only loosely related via the asset prices observed

by analysts. Therefore, the recovery solutions of the equation systems under the original

and consolidated specifications in general do not satisfy the consistency conditions (40)-(42),

indicating the inconsistency of the recovery results under the two specifications.

Quantitatively, we first assume that the generalized recovery works under the first ana-

lyst’s (original) specification S. Per JLP (2019), this means that the characteristics of the

objective underlying market model are unambiguously recovered by obtaining an unique so-

lution of the recovery equation systems (8).19 The second analyst perceives the consolidated

specification S, and then observes and employs AD asset prices A’s (38) to solve the recov-

ery system (39) associated with the consolidated specification. In the interest of a recovery

consistency analysis, we assume that the generalized recovery also works under the second

19Recall that the key point of generalized recovery is that, when it works, the number of data horizons
can be larger than the number of states, T > S, as discussed below (9).
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analyst’s (consolidated) specification S.20 We then examine whether the associated recovery

equation systems (8) and (39) are compatible with each another given that the conditions

(40)-(42) hold as required for consistent recoveries. To this end, we derive a version of the

consolidated recovery system that can be compared directly with the original recovery sys-

tem. Specifically, we employ the AD price relation (38) and the required consistency of the

time discount factors (40) and marginal utilities (42) to obtain the following version of the

consolidated recovery system in terms of original AD asset prices A’s,

K∑
j=1

Aτ ;1j
M1

Mj

+
S∑

j=K+1

Aτ ;1j
M1

MS

= δτ , ∀τ ∈ {1, . . . , T}. (43)

We observe that the version (43) of the consolidated recovery system reduces to the original

recovery system (8) when the latter has an identical marginal utility solution for every single

state {j} of the coupled state S,21

M1

Mj

=
M1

MS

, ∀j ∈ S = {K + 1, . . . , S}. (44)

Recall that when the generalized recovery works for both specifications as we assumed, the

original (8) and consolidated (43) recovery systems have unique solutions for any sufficiently

large number of price data horizons T > S (per JLP (2019), and the discussion below (9)).

This uniqueness of the recovery solutions then implies that the equality of marginal utilities

(44) in all single states {j} corresponding to a coupled state S is both necessary and sufficient

to reconcile the recovery results under the original and consolidated specifications. When

this happens, condition (44) also simplifies and reconciles the consistent condition (42) for

marginal utility of the consolidated state.22 We recapitulate these findings in Proposition 2

20With regard to the consolidated specification, there are only two possibilities; either (i) the generalized
recovery works (i.e., system (39) has a unique solution), or (ii) the generalized recovery does not work (i.e.,
system (39) has none or multiple solutions). We rule out the possibility (ii) in our analysis because in this
case, the recovery works for the first but not the second analyst, making their recovery results outright
incompatible.

21Note that factor
M1

MS

is the same for all j’s, so it was placed inside the second summation in the right-hand

side of (43).
22After substituting the equality (44) of

Mj

M1
for all j ∈ S = {K + 1, . . . , S} into (42), this consistency

condition for the marginal utility of state S reduces to an identity,
MS

M1

=
∑S
j=K+1

p0,τ (1,j)∑S
h=K+1 p0,τ (1,h)

Mj

M1
=
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below, after discussing the alternative case of the coupled current state.

Case 2: Coupled current state

In this case, the current state is a coupled state. Specifically, let the first consolidated state

1 be a coupled state (composing of K first original states {1, . . . , K}) and the remaining

S − 1 consolidated states be single states (with S −K = S − 1) as illustrated in Figure 5,

1 = {1, . . . , K}, K + 1 = {K + 1}, . . . , S = {S}.

Let the current state be the first state. It is the state {1} to the first analyst who employs the

original specification S and the state 1 to the second analyst who employs the consolidated

specification S.23 The observed AD asset prices are interpreted by the two analysts according

Figure 5: Case 2 – The current state is a coupled state: 1 = {1, . . . ,K}.

to their perceived state space specifications and are related by the no-arbitrage principle as

follows (similar to (38) for the case of single current state), Coupled state 1: Aτ ;1 1 =
∑K

j=1Aτ ;1j,

Single states j = j ∈ {K + 1, . . . , S}: Aτ ;1 j = Aτ ;1j,
∀τ ∈ {1, . . . , T}, (45)

M1

MS

∑S
j=K+1

p0,τ (1,j)∑S
h=K+1 p0,τ (1,h)

=
M1

MS

.
23Example 1 illustrates this configuration when the coupled consolidated state 2 is the current state.
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where Aτ ;1j and Aτ ;1 j denote the prices of AD assets contingent respectively on states j

and j of the original and consolidated specifications at time τ . The first analyst solves the

original generalized recovery system (8), and the second solves a similar system adapted to

the consolidated specification,

Aτ ;1 1 +
S∑

j=K+1

Aτ ;1 j
M1

M j

= δ
τ
, ∀τ ∈ {1, . . . , T}. (46)

Consistency conditions: We present the consistency conditions and briefly explain their

construction, before discussing their rationales and impacts on the recovery results under

different specifications. The consistency conditions are as follows (similar to (40)-(42) for

the single current state, and derived in Internet Appendix A.2),

time discount factor : δ = δ, (47)

transition probability :

 p0,τ (1, 1) =
∑K

`=1 p0,τ (1, `)
M`

M1
,

p0,τ (1, j) = p0,τ (1, j)
1−

∑K
`=1 p0,τ (1,`)

M`
M1

1−
∑K
`=1 p0,τ (1,`)

,

∀τ ∈ {1, . . . , T},

∀j = j ∈ {K + 1, . . . , S},

(48)

marginal utilities :
M j

M1

=
Mj

M1

1−
∑K

`=1 p0,τ (1, `)

1−
∑K

`=1 p0,τ (1, `)
M`

M1︸ ︷︷ ︸
≡H

,
∀j = j ∈ {K + 1, . . . , S},

∀τ ∈ {1, . . . , T}.

(49)

Discussion: The transition probability to the coupled state 1 under the consolidated spec-

ification (first equation in (48)) is an aggregation of the transition probabilities to the cor-

responding single states j ∈ 1 = {1, . . . , K} under the original specification. Single states j

of higher state prices
¶
Mj

M1

©
are more prominent in this aggregation because they contribute

more to the AD asset price Aτ ;1 1, based on which the second analyst infers the transition

probabilities under the consolidated specification. By contrast, the consistency conditions

for the transition probabilities to single states (second equation in (48)) require that these

probabilities under the two specifications be proportional, with the proportionality being

the same for all final single states j = j ∈ {K + 1, . . . , S}. This is because both analysts
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observe identical AD contracts and prices that are contingent on these single states. The

same reason justifies the proportionality of the state price densities of single states under

the two specifications, leading to the consistency conditions (49) for marginal utilities.

Tensions: We now examine the tensions between consistency conditions and the generalized

recovery approach when the current state is a couple state 1 = {1, . . . , K} illustrated in

Figure 5.

Intuitively, while consistency conditions (47)-(49) unambiguously imply unique consol-

idated recovery results from the original recovery results, the two set of results arise as

solutions to two different recovery equation systems. These equation systems, being asso-

ciated with original and consolidated specifications, are only loosely related via the asset

prices observed by analysts. Therefore, the recovery results under the two specifications in

general do not satisfy the consistency conditions (47)-(49), indicating the inconsistency of

the recovery results under the two specifications.

Quantitatively, similar to the analysis of the tensions in the case of single current state

(Case 1 above), we start with the assumption that the generalized recovery works for both

specifications and the conditions (47)-(49) hold as required for the recovery consistency.

In this premise, recovery results are unique solutions to the respective recovery equation

systems (8) and (46). We then examine whether the systems (8) and (46) are compatible

with each another given the required consistency conditions (47)-(49). To this end, we

derive a version of the consolidated recovery system that can be compared directly with the

original the recovery system. Specifically, we employ the AD price relation (45) and the

required consistency of the time discount factors (47) and marginal utilities (49) to obtain

the following version of the consolidated recovery system in terms of original AD asset prices

A’s,
K∑
j=1

Aτ ;1j +
S∑

j=K+1

Aτ ;1j
M1

Mj

H = δτ , ∀τ ∈ {1, . . . , T}, (50)

where H =
1−

∑K
j=1 p0,τ (1,j)

1−
∑K
j=1 p0,τ (1,j)

Mj
M1

is defined in (49) and does not vary with state j. We observe

that the version (50) of the consolidated recovery system reduces to the original recovery

system (8) when the latter has an identical marginal utility solution for every single state
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{j} of the coupled state 1,24

M1

Mj

= 1, ∀j ∈ 1 = {1, . . . , K}, (51)

As we assume that the generalized recovery works for both specifications, the original (8) and

consolidated (50) recovery systems have unique solutions for any sufficiently large number of

price data horizons T > S. This uniqueness of the recovery solutions then implies that the

equality of marginal utilities (51) of all single states {j} corresponding to a coupled state

1 is both necessary and sufficient to reconcile the recovery results under the original and

consolidated specifications. This finding concerning the case of the coupled current state is

similar to the one concerning the case of the single current state (44). We formalize these

findings in the following result and relegate a detailed derivation to Internet Appendix B.2.

Proposition 2 Let S and S denote two state space specifications of the same objective but

unobserved market model. The generalized recovery results obtained under the two specifica-

tions are consistent if and only if the marginal utilities of all single states {j} under S that

correspond to a coupled state j under S are equal.

Recoveries results under S and S are consistent⇐⇒Mi = Mk, ∀i, k ∈ j, j ∈ S. (52)

This necessary and sufficient condition holds regardless of whether the current state is a

single or coupled state under the consolidated specification.

In the recovery process, asset prices are exogenous inputs; risk and time preferences and

transition probabilities are endogenous outputs. While Proposition 2’s condition (52) for

consistent recoveries is stated in terms of the risk preferences, its restrictive nature is clear.

The proposition asserts that, if the objective underlying market model does not feature

equal marginal utilities in all states of S that belong to a consolidated state of S, then the

generalized recoveries under two different specifications are inconsistent, even when these

recoveries are unique under their respective specifications. An practical and key issue is that

24Note that when (51) holds, we have H ≡ 1−
∑K
j=1 p0,τ (1,j)

1−
∑K
j=1 p0,τ (1,j)

Mj
M1

= 1, and systems (50) and (8) are identical

in this case. Therefore, we do not need the additional condition H = 1 to identify (50) with (8).
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neither of the analysts observes the state space specification of the objective market model.

Therefore, the choice of state specification is endogenous to the recovery process, so its

associated generalized recovery results are subject to the inconsistency issue of Proposition

2. A comparison of conditions (27) and (52) indicates an identical (and strong) requirement

for the consistency of Ross’s and generalized recoveries (Propositions 1 and 2) under different

state space specifications, namely, the equality of marginal utilities in all original states j ∈ S

that correspond to a same consolidated state j ∈ S.

4.2 Generalized Recovery: Best-fit Approach

The generalized recovery makes use of all T available (possibly redundant) horizons of price

data, i.e., featuring more price constraints than unknowns. Such a system offers a unique

solution, and the exact version of the general recovery works only when these AD price

data arise consistently, hence redundantly, from the objective but unobserved market model

(8) and the specification is correct (Proposition 2). To potentially mitigate these strong

conditions, it is instructive to consider a best-fit version of the generalized recovery. Tak-

ing the recovered time discount factors as given, the best-fit approach simplifies the price

constraints in the generalized recovery to regression equations. We examine whether the

consistency issue underlying Proposition 2 can be addressed by this best-fit approximation

of the generalized recovery.

Let {1} and 1 be the current state under the original S and consolidated S specifications.

We stack the generalized recovery equations (8) for T different horizons under S and S into

respective matrix forms,


A11 . . . A1S

A2;11 . . . A2;1S

... . . .
...

AT ;11 . . . AT ;1S


︸ ︷︷ ︸

Aτ


1

M1

M2

...

M1

MS


︸ ︷︷ ︸

f

=


δ

δ2

...

δT


︸ ︷︷ ︸

δ

, and


A1 1 . . . A1S

A2;1 1 . . . A2;1S

... . . .
...

AT ;1 1 . . . AT ;1S


︸ ︷︷ ︸

Aτ


1

M1

M2
...

M1

MS


︸ ︷︷ ︸

f

=


δ

δ
2

...

δ
T


︸ ︷︷ ︸

δ

,

(53)

where Aτ denotes the T × S observed price matrix for T horizons (6) (with the current
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state {i} ≡ {1}), f the S × 1 vector of marginal utility ratios
¶
M1

Mj

©
, j ∈ {1, . . . , S}, and δ

the T × 1 vector of powers of discount factors. The overline sign denotes the corresponding

quantities under the consolidated specification. We assume that the price matrix Aτ has full

rank given the long time horizon and randomness in the price data.

Note that (i) the consistency condition for the recovered time discount factors requires

that δ = δ, and (ii) the nonlinearity in the generalized recovery equations (53) involves the

powers of time discount factors. Therefore, at first we take the time discount factors and

their required consistency, δ = δ, as given. This step preserves the consistency requirement

in the thought experiment with two subjective specifications while transforming (53) into

linear systems of marginal utility ratios as unknowns, Aτ f = δ and Aτ f = δ. When price

data of all horizons is employed and redundant, T > S and T > S, the best-fit recovery

solutions of the marginal utilities are respectively,

f = [A′τAτ ]
−1

A′τδ, f =
î
A
′
τAτ

ó−1
A
′
τδ =

î
A
′
τAτ

ó−1
A
′
τδ. (54)

Using the relationship Aτ = AτC (31) between AD matrices, we have25

[C′A′τAτC] f = C′A′τδ. (55)

We observe that the solution f to the second equation in (54) (or equivalently (55)) does

not present a valid marginal utility recovery result in general. This is because the first entry

of such a solution generally differs from one, hence violating the normalization constraint of

a valid recovery solution (per the second system in (53)). We state below a further result

that identifies the existence of a valid and unique solution f of (55) with the consistency

of the generalized recovery’s best-fit implementation and relegate a detailed derivation to

Internet Appendix B.3.

Proposition 3 Let S and S denote two state space specifications of the same objective but

25Indeed, (31) implies that the left-hand side of (55) is [C′A′τAτC] f =
î
A
′
τAτ

ó
f . The substitution

of f from (54) shows that this expression equals
î
A
′
τAτ

ó î
A
′
τAτ

ó−1
A
′
τδ = A

′
τδ = C′A′τδ, which is the

right-hand side of (55).
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unobserved market model. Suppose that the specification S is generated by AD asset prices,

time preference, and marginal utilities denoted respectively as Aτ , δ, and f . The best-fit

generalized recoveries obtained under the two specifications S and S are consistent if and

only if the marginal utilities of all single states {j} under S that correspond to a coupled

state j under S are equal.

Recoveries results under S and S are consistent⇐⇒Mi = Mk, ∀i, k ∈ j, j ∈ S. (56)

This necessary and sufficient condition holds regardless of whether the current state is a

single or coupled state under the consolidated specification.

Recall that a successful recovery procedure requires a unique solution of the marginal

utilities, probabilities, and time discount factor. In the best-fit recoveries above, the specifi-

cation S is generated by the objective market model so that the first equation in (54) always

holds by construction. Because we take the time preference consistency δ = δ as given to ex-

amine the consistency of the best-fit risk preference recovery, having a consistent and unique

marginal utility solution f to (55) is equivalent to obtaining a unique best-fit recovery for

the specification S. To this end, Proposition 3 formally shows that (i) consistent recoveries

under S and S will always satisfy the best-fit equations (54), and (ii) if the best-fit solution f

is valid, then the recoveries are consistent. Note that the same necessary and sufficient con-

dition underlies Propositions 2 and 3. Therefore, when this condition holds, the exact and

best-fit approaches deliver the same generalized recovery results. Intuitively, this is because

both approaches employ all available horizons of price data which are redundant but consis-

tent when the condition of Proposition 2 and 3 holds. However, the necessary and sufficient

condition of Propositions 2 and 3 is strong, signifying that the consistency issue remains

the same even when we adopt an approximate (best-fit) implementation of the generalized

recovery. The earlier observation that, in general, the solution to (55) does not present a

valid recovery result reinforces this consistency issue of the best-fit approach to the general

recovery. This finding mirrors a similar consistency issue of the best-fit implementation of

Ross’s recovery (Section 3.3).
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4.3 Generalized Recovery: Simulation Results

This section presents simulation evidences to illustrate the generalized recovery process under

different state space specifications (Proposition 2). Our simulation again closely follows the

thought experiment setup of Section 2.2 to evaluate the generalized recovery results under

different specifications. The simulation steps are as follows.

Simulation Procedure: Our simulation consists of N = 20 independent random trials.

For each trial, data inputs are constructed as follows. We randomly generate (i) the time

discount factor δ and marginal utility ratios
Mj

M1
, ∀j ∈ 2, . . . , S, from continuous uniform

distributions respectively with supports [0.8, 1] and
[
1
2
, 2
]
, and (ii) the τ -period transition

probabilities {p0,τ (1, j)} from the current state {1} to all future states j at time τ , where τ ∈

{1, . . . , T}. For the generalized recovery (8), we choose T = S, and make sure that for every

τ ∈ {1, . . . , T}, the sum of transition probabilities is constrained to be one,
∑

j p0,τ (1, j) = 1.

For each trial we perform the following five steps and report the corresponding simulation

results.

Step 1: We take as given at first the characteristics of the underlying market model: (i) the

state price specification S = {1, . . . , S}, and (ii) the time discount factor δ, the marginal

utility ratios
¶
Mj

M1

©
in every state j ∈ S, and the τ -period transition probabilities {p0,τ (1, j)}

from the current state {1} to all future states j at time τ , where τ ∈ {1, . . . , T}, T = S. All

items in (ii) are generated in a random trial as described above.

Step 2: Using the above knowledge of objective market model and the τ -period AD pricing

equation (9), we generate the current τ -period AD asset prices {Aτ ;1j} that pay off in all

future states j ∈ S at maturities τ ∈ {1, . . . , T}.26 From now on, we disregard the knowledge

of the time and risk preferences and transition probabilities
¶
δ,

Mj

M1
, p0,τ (1, j)

©
of the objective

underlying market model and employ only the prices {Aτ,1j} generated in this step.

Step 3: Employing the original specification S and AD asset prices {Aτ,1j}, for j ∈ S and

τ ∈ {1, . . . , T}, the first analyst recovers the time discount factor, marginal utilities, and

the τ -period transition probabilities associated with the specification S in the generalized

26Specifically, equation (9) gives the τ -period AD asset prices, Aτ ;1j = δτp0,τ (1, j)
Mj

M1
, in terms of the time

discount factor δ, the marginal utilities
¶
Mj

M1

©
, and the τ -period transition probabilities p0,τ (1, j).
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recovery process. The generalized recovery process is implemented by first solving the system

(8) to obtain the time discount factor, marginal utilities, and then (9) for the transition

probabilities {p0,τ (1, j)} that start from the current state {1}.

Step 4: Employing the consolidated specification S and the consolidation process (either (38)

or (45)), we construct the consolidated AD asset prices {Aτ,1 j}, for j ∈ S and τ ∈ {1, . . . , T}

(now with T = S). Observing these prices, the second analyst then recovers the time discount

factor, marginal utilities, and the transition probabilities associated with the specification

S in the generalized recovery process (solving either (39) or (46)). That is, we repeat

Step 3 while replacing the original AD asset prices {Aτ,1j} by the consolidated AD asset

prices {Aτ,1 j}, where 1 denotes the current state from the second analyst’s perspective. For

completeness, we consider two possible (and exhaustive) scenarios concerning the current

state 1 of the consolidated specification.

Case 1: Current state 1 is a single state, i.e., it is identical to the current original state,

1 = {1} ∈ S.

Case 2: Current state 1 is a coupled state, i.e., it corresponds to several original states,

1 = {1, . . . , j} ∈ S.

Step 5: We compare the recovery results obtained in Step 3 for the original specification S

and Step 4 for the consolidated specification S and check their consistency conditions (either

(40)-(42) or (47)-(49)).

Simulation Model: Our specific simulation adopts a specification of S = 5 states, S =

{1, 2, 3, 4, 5}, for the underlying market model and randomly generates inputs as in Step 1,

and AD asset prices {Aτ ;1j} as in Step 2. The first analyst perceives the specification S

and uses these AD prices {Aτ ;1j} for T = 5 horizons, τ ∈ {1, 2, 3, 4, 5}, to recover the time

discount factor and marginal utilities (solving (8)) and transition probabilities that starts

from current state 1 (solving (9)) (Step 3). For every simulation trial, these recovery results

are identical to the time discount factor, marginal utilities, and transition probability inputs

of Step 1, validating the generalized recovery approach.

The second analyst perceives the a 3-state specification S = {1, 2, 3}. We consider
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two scenarios listed in (35) concerning the current state 1 of the consolidated specification,

namely, {1} = {1}, 2 = {2, 3}, 3 = {4, 5} (Case 1), and {1} = {1, 2}, 2 = {3, 4}, 3 = {5}

(Case 2). For each case, (i) we construct the consolidated AD asset prices {Aτ,1 j}, for j ∈ S

and τ ∈ {1, . . . , T}, and (ii) using these AD prices {Aτ,1 j} for T = 3 horizons, τ ∈ {1, 2, 3},

the second analyst implements the generalized recovery to recover the time discount factor,

marginal utilities, and transition probabilities that starts from current state 1 associated S

(Step 4). For each case, we examine the consistency of recoveries by the two analysts by

checking whether their recovery results satisfy the consistency conditions (either (40)-(42)

or (47)-(49), Step 5).
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Figure 6: Single current state: Time discount comparison

Simulation results: For the single current state {1} = {1} (Case 1): Figure 6 plots the

difference of the recovered time discount factors, and Figure 7 plots the root mean square

error (RMSE) of the recovered transition probabilities (left panel) and of the recovered

marginal utilities (right panel) by the two analysts.

The errors are defined as the absolute difference between simulation results of the left-

and right-hand sides of each consistency equation in (40)-(42). For each simulation trial,

the RMSE is computed using a panel of errors computed for different states and different

maturities. Each data point in these graphs corresponds to one simulation trial (of totally

N = 20 simulation trials). Figure 6 provides simulation evidence that the recovered time

discount factors δ and δ are not equal. Left and right panels of Figure 7 also show broadly that

the transition probabilities and marginal utilities recovered by two analysts are inconsistent.
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Figure 7: Single current state: RMSE of probabilities and marginal utilities
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Figure 8: Coupled current state: Time discount comparison

For the coupled current state {1} = {1, 2} (Case 2): Similar to Case 1 (single current

state), Figure 8 provides simulation evidence that the recovered time discount factors δ and δ

are not equal, and Figure 9 also shows broadly that the transition probabilities and marginal

utilities recovered by two analysts are inconsistent. In summary, our simulations show that

the generalized recovery results under two different specifications are broadly inconsistent

with each other whether the current state in the consolidated specification is a single or a

coupled state.
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Figure 9: Coupled current state: RMSE of probabilities and marginal utilities

5 Continuous space-time setting

The analysis in previous sections shows that, for the same objective underlying market model,

the recovery results associated with different discrete state space specifications are possibly

irreconcilable even when these results are unique under the respective specification. We

can have a deeper insight into the possible inconsistency of recovery results under different

specifications from the perspective of a continuous state space setting, in which different

discrete specifications emerge from different discretization schemes of the same underlying

continuous state space specification. Given a set of price data of state-contingent financial

assets observed in the financial markets, if the state space resolution resulted from the

discretization does not match the state structure that available state-contingent assets can

contract on, then the discretization scheme is incompatible with price data. Consequently,

the recovery results based on such a discretization scheme may be inconsistent with those of

the objective underlying market model. Our investigation then suggests a proper check for

the state space discretization to alleviate this inconsistency issue. We derive the continuous-

setting version of Ross’s and generalized recovery equation systems in Section 5.1 and discuss

their properties in Section 5.2.
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5.1 Ross’s and Generalized Recoveries in the Continuous Setting

We start out by assuming that the market is driven by a stochastic state variable Yt in

continuous time. For ease of exposition, we assume that Yt is one-dimensional and follows

some ex-ante unknown diffusion process in either physical or risk-neutral measure,27

dyt+dt
yt

=
yt+dt − yt

yt
= µydt+ σydBt = µQy dt+ σydB

Q
t , (57)

where Bt and BQ
t are standard Brownian motions in physical and risk-neutral measure

respectively. The drifts µy, µ
Q
y and volatility σy are to be recovered ex-post and can be state-

dependent (in form of processes adapted to natural filtration generated by Bt and BQ
t ).28

All quantities in the market equilibrium are modeled as functions of this state variable, e.g.,

the SDF M(yt).

We recall that key to the recovery in the discrete state space setting is the AD asset price

matrix At, which is associated with a horizon length t. In this notation, the (i, j) element

of Adt, i.e., Adt,ij, is the current price of the AD security that pays $1 only if the state in

the time dt from now is j. In comparison, key to the recovery in the continuous state space

setting is the infinitesimal operator DQ associated with the risk-neutral state dynamic (57)

because this operator plays the preeminent role of AD matrix in pricing all traded assets in

the continuous setting, where DQ is defined as

DQ ≡ yµQy
d

dy
+

1

2
y2σ2

y

d2

dy2
− r(y), (58)

and r(y) is the short-term interest rate (or short rate) process. Formal correspondences

between these two objects in both short and long time horizons are

Adt ←→ 1+ dtDQ; At ←→ e
∫ t dsDQ , (59)

where the exponential operator e
∫ t dsDQ should be understood as the power series of DQ.

27Higher dimensions and discontinuous dynamic (jumps) can also be incorporated.
28In special cases in which y is the price of traded assets such as equities or equity indexes, the risk-neutral

drift coincides with risk-free rate, µQy = r(y).
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These correspondences generalize an earlier result in Tran (2019). By resorting to the un-

derlying continuous dynamics, the mapping (59) gives us a way to visualize and model the

full AD price matrix for any time horizons, even for those that are shorter than what avail-

able in actual data. Furthermore, large and discontinuous changes in state variable y can

also be conveniently modeled by incorporating jump dynamic into the infinitesimal operator

DQ. An immediate application of the correspondence (59) is the construction of the recovery

equations in the continuous state space setting. To this end, consider the eigenvalue problem

of the AD price matrix, Ax = δx, where x denotes the eigenvector whose components {xj}

are state-dependent in the discrete setting.

First, at the short-term horizon, this eigenvalue problem reduces to Adtx = δdtx. In the

limit of infinitesimal (continuous) time interval dt→ 0, an application of the correspondence

(59) gives an continuous-time expression for this eigenvalue problem at the short-term horizon

Adtx = δdtx←→
(
1+ dtDQ

)
x(y) = (1+ dt log δ) x(y)

or equivalently, DQx(y) = −ρx(y), where: ρ = − log δ, δ = e−ρ. (60)

Note that ρ is the time discount rate in the continuous time. Using the expression (58) for

the infinitesimal operator, the last equation is a differential equation in continuous setting

1

2
y2σ2

y

d2x(y)

dy2
+ yµQy

dx(y)

dy
− r(y)x(y) = −ρx(y). (61)

Tran (2019) shows that all stochastic discount factors that are functions M(y) of the state

variable, of which Ross’s recovery setting is a particular case, must satisfy the differential

equation (61). Carr and Yu (2012) show that this differential equation (61) has unique

positive solution x(y) (and the associated discount rate ρ) when (i) the state variable y is

a bounded diffusion process, and (ii) appropriate Sturm-Liouville boundary conditions are

imposed on the boundary of the support of y, thus signifying (61) as the recovery equation

for Ross’s recovery in the continuous setting.
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Second, at long-term horizons, the eigenvalue problem Ax = δx generalizes to

Atx = δtx, t ∈ R+. (62)

When we fix the current state to be {1}, we limit the above matrix equation to component

equations that concern only the first row of matrix At, with varying horizons t. Observe that

the elements of the matrix At are current prices of t-period AD assets. In particular, the

first row of At contains the current AD asset prices {At,1j} that initiate in the current state

{1} and payoff in states {j} at t. Therefore, when being fixed to the current state {1}, (62)

becomes the generalized recovery equation system (8). In the limit of infinitesimal (continu-

ous) time interval dt→ 0, an application of the correspondence (59) gives a continuous-time

expression for the generalized recovery equation (62)

Atx = δtx←→ e
∫ t dsDQx(y) = e−ρtx(y). (63)

In summary, the same eigenvalue problem Ax = δx of the AD price matrix reduces to

(i) Ross’s recovery in the short-term horizon when we do not limit the transitions to those

starting only from the current state and (ii) the generalized recovery in long-term horizons

when we limit the transitions to those starting only from the current state. We next discuss

the implementation and consistency aspects of the recovery in the continuous setting.

5.2 Discussion

The recovery implementation of the recovery in the continuous setting starts with the dis-

cretization of the continuous state space, in which the difference between two discretization

schemes corresponds to the difference between two state space specifications (S and S) of

the discrete state space considered earlier. The discretization also yields an explicit mapping

between the AD price matrix A and the infinitesimal operator (58).

The above analysis and the expression of the infinitesimal operator (58) show that the

recovery processes in the continuous setting require the knowledge of the risk-neutral dynam-

ics {µQy , σy} of the state variable and the short rate process r(y). The risk-neutral dynamics
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replace the AD price matrix in the discrete-setting recovery processes (4) and (8) and can be

inferred from option price data in model-independent approaches Breeden and Litzenberger

(1978).29

For Ross’s recovery process, these estimates of risk-neutral state dynamics {µQy , σy} from

option prices are inputs into (61) to produce an explicit linear differential equation to recover

uniquely the (inverse) marginal utility function x(y), after imposing appropriate boundary

conditions. For example, in the special case in which the short rate is state-independent,

r(y) = r, the unique positive eigenstate solution of (61) is a constant function x(y) = x,

corresponding to the eigenvalue ρ = r. That is, the recovered time discount rate is risk-

neutral when the short rate is state-independent. The same result is obtained by Ross (2015)

in discrete state space setting. For the generalized recovery process, the same inputs of risk-

neutral state dynamics into (63), however, do not produce a linear differential equation

because generalized recovery dynamics are intrinsically nonlinear (8). To shed light into

possible consistency issues of the recovery implementation discussed in previous sections

(Proposition 1), we proceed with Ross’s recovery in the continuous setting below.

To discretize the state space, we consider a finite difference representation of the infinites-

imal operator,

DQx(y) = −r(y)x(y) + µQy y
x(y + dy)− x(y − dy)

2dy
+

1

2
σ2
yy

2x(y + dy)− 2x(y) + x(y − dy)

(dy)2
.

(64)

This representation, together with the correspondence Adt ←→
(
1+ dtDQ

)
, gives rise to

29More generally, when the state variable y (and the short rate r) is observable and markets are complete,
a cross section of state-contingent contract prices identifies the risk-neutral state dynamic {µQy , σy}. Bakshi
et al. (2003) derive model-independent formulas for first four risk-neutral moments of state variables in term
of integrals of option prices. Dubynskiy and Goldstein (2013) show that price P (dY ) of contract of payoff
dy identifies µQy , and price P (dy2) of contract of payoff (dy)2 identifies σ2

y.
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the following explicit matrix form for the AD matrix associated with horizon dt,

Adt =



X Y 0 0 . . . 0 0 0

Z X Y 0 . . . 0 0 0

0 Z X Y . . . 0 0 0
...

. . .
...

...
. . .

...

0 0 0 . . . Z X Y 0

0 0 0 . . . 0 Z X Y

0 0 0 . . . 0 0 Z X



, where



X ≡ 1− r(y)dt− σ2
yy

2 dt
(dy)2

Y ≡ 1
2
σ2
yy

2 dt
(dy)2

+ 1
2
µQy y

dt
dy

Z ≡ 1
2
σ2
yy

2 dt
(dy)2
− 1

2
µQy y

dt
dy
.

(65)

Note that X, Y , and Z are functions of y, and thus their values vary with their positions in

the AD price matrix.

To exemplify the possible causes of consistency issues found in discrete state setting,

in what follows we assume that the market is driven by an underlying diffusion process yt

(57) with constant risk-neutral dynamics {µQy , σy} in the continuous time and state setting,

though our analysis also applies to more general setting of state-dependent dynamics.

Arbitrage opportunities: The finite differencing representation (65) of AD price matrix

Adt with time horizon dt clearly shows that time and state discretization can give rise to

negative AD prices and thus arbitrage opportunities. Indeed, X, Y , and Z in (65) are

positive only when dy
y

and dt jointly satisfy

∣∣∣∣∣ σ2
y

µQy

∣∣∣∣∣ > dy

y
> σy

 
dt

1− r(y)dt
. (66)

Analysts unaware of dynamic {µQy , σy} may unknowingly choose {dy, dt} such that one (or

both) of the above inequalities is violated. As a result, arbitrage opportunities may spuriously

arise though they are absent in the original asset pricing model in the continuous setting.

This analysis identifies a source of arbitrage opportunities that are artificially created in

the process of discretizing time and state space. That is, the finite-difference step dy
y

of

the state variable, i.e., the discretization of the state space, needs to be compatible with

51



and bounded by the state {µQy , σy} and short rate r(y) dynamics and the time step dt. In

the state where the state variance is much smaller that the state growth rate,
∣∣∣ σ2

y

µQy

∣∣∣ � 1,

one needs a fine discretization scheme (small dy
y

). Intuitively, when the state dynamics

are smooth, a high-resolution finite differencing is needed to recover the underlying state-

contingent (inverse) marginal utility x(y). When the subjective discretization scheme by an

analyst does not respect the bounds (66) imposed by the state dynamics, spurious arbitrage

opportunities and inconsistent recovery results may arise.30 Our analysis suggests that, in

order to alleviate these spurious arbitrage opportunities, one needs to estimate the risk-

neutral dynamics {µQy , σy} and short rate r(y) and then choose a discretization scheme

compatible with these estimates.

6 Conclusion

The implementation of recovery requires a subjective specification of the state space since this

specification is not observed prior to the recovery process. We show that different subjective

specifications may lead to permanent loss of information in price data, spurious arbitrages in

the pricing of different effective AD matrices, and almost surely inconsistent recovered results

of market’s belief, time and risk preferences. From a perspective of the continuous time and

state space setting, this recovery consistency issue is understood as arising from an improper

and subjective discretization scheme of state space. In such a discretization scheme, the

state space partition resulted from the discretization does not match the state structure that

available state-contingent assets can contract on. As a result, the recovery results based

on such a discretization scheme may be inconsistent with those of the objective underlying

market model. We propose first to estimate the risk-neutral dynamics of state variables,

which then informs a proper discretization of the time and state space in accordance with

the sampling frequency of price data.

30To relate this finding with the possible inconsistency in the recovery results under two different discrete
state space specifications (Propositions 1 and 2), the original specification S perceived by the first analyst
corresponds to the objective underlying market model in the continuous setting. The consolidated spec-
ification S perceived by the second analyst corresponds to a subjective discretization, which can lead to
inconsistent recovery results if the subjective discretization scheme is incompatible with the state dynamics.
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Internet Appendix to “Recovery and Consistency”∗

Ngoc-Khanh Tran Shixiang Xia

June 7, 2022

A Consistency Conditions in Recovery

This section presents the derivation of the consistency conditions in Ross’s and generalized

recovery approaches. They are key to evaluate a recovery approach and are employed in the

proofs of Propositions 1-3 in Section B below.

A.1 Ross’s Recovery

An example

We consider the original specification S = {1, 2, 3}. Suppose first that the current state

{1} is a single state, and the consolidated specification is S = {1, 2}, where 1 = {1} and

2 = {2, 3}. The no-arbitrage restrictions of AD assets are

A1 1 = A11

A1 2 = A12 + A13,

which implies the following consistency conditions

pt,t+1(1, 1) = pt,t+1(1, 1)

pt,t+1(1, 2) = pt,t+1(1, 2) + pt,t+1(1, 3)

M2

M1

=
M2

M1
pt,t+1(1, 2) + M3

M1
pt,t+1(1, 3)

pt,t+1(1, 2) + pt,t+1(1, 3)
.

∗Tran: Pamplin College of Business, Virginia Tech, nktran7@vt.edu. Xia: The Hong Kong Polytechnic
University, shixiang.xia@polyu.edu.hk.
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Next, we consider the coupled current state. That is, the consolidated specification is

S = {1, 2}, where 1 = {1, 2} and 2 = {3}. The no-arbitrage restrictions of AD assets are

A1 1 = A11 + A12

A1 2 = A13,

which implies the following consistency conditions

pt,t+1(1, 1) = pt,t+1(1, 1) +
M2

M1

pt,t+1(1, 2)

pt,t+1(1, 2) =
1

H
pt,t+1(1, 3)

H =
pt,t+1(1, 3)

1− pt,t+1(1, 1)− M2

M1
pt,t+1(1, 2)

.

Case 1: Single current state

We consider the original specification of S = {1, · · · , S} and the consolidated specification

S = {1, 2, · · · , K, S}, where 1 = {1}, 2 = {2}, · · · , K = {K}, and S = {K + 1, · · · , S}.

Even though we only consider one coupled state here, it is straightforward to generalize the

consistency conditions.

The no-arbitrage condition of an AD asset from the current state to another single state

j = j ∈ {1, · · · , K} is A1 j = A1j, which implies that δ
Mj

M1

pt,t+1(1, j) = δ
Mj

M1
pt,t+1(1, j). Since

the single states are identical in both the original and the consolidated specifications, we

must have

M j

Mj

=
M1

M1

, ∀j = j ∈ {1, · · · , K}.

It is clear that the time discount factor δ in the consolidated specification must be equal

to the original time discount factor δ for the two specifications to be consistent. Together

with the condition that δ = δ, the above no-arbitrage restriction implies

pt,t+1(1, j) = pt,t+1(1, j), ∀j = j ∈ {1, · · · , K} and t.
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Since
∑

j∈S pt,t+1(1, j) = 1, the probability pt,t+1(1, S) must satisfy

pt,t+1(1, S) =
S∑

j=K+1

pt,t+1(1, j).

The no-arbitrage condition of an AD asset from the current state to the consolidated

state S is A1S =
∑S

j=K+1A1j, i.e., δ
MS

M1

pt,t+1(1, S) =
∑S

j=K+1 δ
Mj

M1
pt,t+1(1, j). Therefore,

MS

M1

=
S∑

j=K+1

pt,t+1(1, j)∑S
i=K+1 pt,t+1(1, i)

Mj

M1

.

Case 2: Coupled current state

We consider the original specification of S = {1, · · · , S} and the consolidated specifica-

tion S = {1, K + 1, · · · , S − 1, S}, where 1 = {1, · · · , K}, K + 1 = {K + 1}, K + 2 =

{K + 2}, · · · , and S = {S}. Even though we only consider one coupled state here, it is

straightforward to generalize the consistency conditions.

The no-arbitrage condition of an AD asset from the current state to itself is A1 1 =∑K
j=1A1j, which implies that δ

M1

M1

pt,t+1(1, 1) =
∑K

j=1 δ
Mj

M1
pt,t+1(1, j). Again, the time dis-

count factor δ in the consolidated specification must be equal to the original time discount

factor δ for the two specifications to be consistent. Using the condition δ = δ gives

pt,t+1(1, 1) =
K∑
j=1

Mj

M1

pt,t+1(1, j).

The no-arbitrage condition of an AD asset from the current state to another single state

j = j ∈ {K + 1, · · · , S} is A1 j = A1j, which implies that δ
Mj

M1

pt,t+1(1, j) = δ
Mj

M1
pt,t+1(1, j).

Thus, we have

pt,t+1(1, j) = pt,t+1(1, j)
Mj

M1

M1

M j

.

We know that
Mj

Mj
must be the same for all j = j ∈ {K + 1, · · · , S} because the single states

3



are identical under the original and the consolidated specifications. This means that M1

M1

Mj

Mj

is the same across all single states. We denote this quantity as H.

Since pt,t+1(1, 1) +
∑S

j=K+1 pt,t+1(1, j) = 1, we have

K∑
j=1

Mj

M1

pt,t+1(1, j) +
S∑

j=K+1

pt,t+1(1, j)
1

H
= 1,

which implies

H =
1−

∑K
j=1 pt,t+1(1, j)

1−
∑K

j=1
Mj

M1
pt,t+1(1, j)

and

pt,t+1(1, j) = pt,t+1(1, j)
1−

∑K
`=1 pt,t+1(1, `)

1−
∑K

`=1
M`

M1
pt,t+1(1, `)

, ∀j = j ∈ {K + 1, · · · , S}.

The above result also gives the consistency condition on marginal utilities of singles states

M j

M1

=
Mj

M1

1−
∑K

`=1 pt,t+1(1, `)

1−
∑K

`=1
M`

M1
pt,t+1(1, `)

, ∀j = j ∈ {K + 1, · · · , S}.

A.2 Generalized Recovery

Case 1: Single current state

We consider the original specification of S = {1, · · · , S} and the consolidated specification

S = {1, 2, · · · , K, S}, where 1 = {1}, 2 = {2}, · · · , K = {K}, and S = {K + 1, · · · , S}.

Even though we only consider one coupled state here, it is straightforward to generalize

the consistency conditions. It is clear that the time discount factor δ in the consolidated

specification must be equal to the original time discount factor δ for the two specifications

to be consistent.

For transition probabilities to another single state j = j ∈ {1, · · · , K}, we need to have

p0,τ (1, j) = p0,τ (1, j) because of the identical nature of single states. For the transition

4



probability to the couple state S, notice that

1 =
∑
j∈S

p0,τ (1, j) =
K∑
j=1

p0,τ (1, j) + p0,τ (1, S) =
K∑
j=1

p0,τ (1, j) + p0,τ (1, S),

which implies that

p0,τ (1, S) = 1−
K∑
j=1

p0,τ (1, j) =
S∑

j=K+1

p0,τ (1, j).

For (ratios of) marginal utilities, we consider the no-arbitrage restrictions for AD assets.

The prices of AD assets contingent on j = j ∈ {1, · · · , K} must satisfy Aτ ;1 j = Aτ ;1j,

which implies δ
τ Mj

M1

p0,τ (1, j) = δτ
Mj

M1
p0,τ (1, j). Using the consistency conditions for the time

discount factor and transition probabilities, we have

M j

M1

=
Mj

M1

, ∀j = j ∈ {1, · · · , K}.

The price of AD asset contingent on the coupled state S satisfies Aτ ;1S =
∑S

j=K+1Aτ ;1j,

which implies that δ
τ MS

M1

p0,τ (1, S) =
∑S

j=K+1 δ
τ Mj

M1
p0,τ (1, j). Using the consistency conditions

for the time discount factor and transition probabilities, we have

MS

M1

=
S∑

j=K+1

p0,τ (1, j)∑S
i=K+1 p0,τ (1, i)

Mj

M1

.

Case 2: Coupled current state

We consider the original specification of S = {1, · · · , S} and the consolidated specifica-

tion S = {1, K + 1, · · · , S − 1, S}, where 1 = {1, · · · , K}, K + 1 = {K + 1}, K + 2 =

{K + 2}, · · · , and S = {S}. Even though we only consider one coupled state here, it is

straightforward to generalize the consistency conditions.

For the transition probability from the coupled current state 1 to itself, consider the

no-arbitrage requirement that Aτ ;1 1 =
∑K

j=1Aτ ;1j, which implies that δ
τ M1

M1

p0,τ (1, 1) =∑K
j=1 δ

τ Mj

M1
p0,τ (1, j). Again, the time discount factor δ in the consolidated specification must

5



be equal to the original time discount factor δ for the two specifications to be consistent.

Using the consistency condition δ = δ gives

p0,τ (1, 1) =
K∑
j=1

Mj

M1

p0,τ (1, j).

For transition probabilities to single states j = j ∈ {K + 1, · · · , S}, notice that Aτ ;1 j =

Aτ ;1j, which implies

p0,τ (1, j) = p0,τ (1, j)
Mj

M1

M1

M j

.

We know that
Mj

Mj
must be the same for all j = j ∈ {K + 1, · · · , S} because the single states

are identical under the original and the consolidated specifications. This means that M1

M1

Mj

Mj

is the same across all single states j = j ∈ {K + 1, · · · , S}. We denote this quantity as H.

Since p0,τ (1, 1) +
∑S

j=K+1 p0,τ (1, j) = 1, using the earlier results we have

K∑
j=1

Mj

M1

p0,τ (1, j) +
S∑

j=K+1

p0,τ (1, j)
1

H
= 1,

which implies

H =
1−

∑K
j=1 p0,τ (1, j)

1−
∑K

j=1
Mj

M1
p0,τ (1, j)

.

Thus, the transition probabilities to single states must satisfy

p0,τ (1, j) = p0,τ (1, j)
1−

∑K
`=1 p0,τ (1, `)

1−
∑K

`=1
M`

M1
p0,τ (1, `)

, ∀j = j ∈ {K + 1, · · · , S}.

Finally, the above derivation also gives the consistency condition on marginal utilities

M j

M1

=
Mj

M1

1−
∑K

`=1 p0,τ (1, `)

1−
∑K

`=1
M`

M1
p0,τ (1, `)

, ∀j = j ∈ {K + 1, · · · , S}.
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B Proofs

This section presents proofs of Propositions 1-3. These proofs center on verifying the holding

of the consistency conditions derived in Section A.

B.1 Proof of Proposition 1

Case 1: Single Current State

We consider the original specification of S = {1, · · · , S} and the consolidated specification

S = {1, 2, · · · , K, S}, where 1 = {1}, 2 = {2}, · · · , K = {K}, and S = {K + 1, · · · , S}.

Suppose that the current state is 1 for the second (consolidated) analyst and {1} for the first

(original) analyst.

We first assume consistent recoveries under both specifications. The consistency require-

ments for this case based on the no-arbitrage restrictions of one-period AD assets are

δ = δ

M j

Mj

=
M1

M1

, ∀j = j ∈ {1, · · · , K}

pt,t+1(1, j) = pt,t+1(1, j), ∀j = j ∈ {1, · · · , K} and t

pt,t+1(1, S) =
S∑

j=K+1

pt,t+1(1, j), ∀t

MS

M1

=
S∑

j=K+1

pt,t+1(1, j)∑S
i=K+1 pt,t+1(1, i)

Mj

M1

, ∀t.

The last condition is the no-arbitrage restriction of one-period AD assets from the current

state to the coupled state S, or A1S =
∑S

j=K+1A1j, the pricing equation (7) of AD assets, and

the consistency of recovered one-period transition probabilities listed above. Generalizing

the no-arbitrage restriction to τ -period AD assets produces Aτ ;1S =
∑S

j=K+1Aτ ;1j, which

7



implies that

MS

M1

=
S∑

j=K+1

pt,t+τ (1, j)∑S
i=K+1 pt,t+τ (1, i)

Mj

M1

, (67)

where pt,t+τ (1, j) is the probability from state 1 at t to state j at t + τ . Note that one-

period ahead probabilities are time-independent (i.e., pt,t+1(1, j) = pt+s,t+s+1(1, j), ∀s, j) in

the premise of Ross’s recovery, although the implied (recovered) τ -period ahead probabilities

pt,t+τ (1, j) are no longer time-independent.

We observe that the consistency condition (67) implied from the no-arbitrage restriction

must hold for all τ ∈ {1, · · · , T}. However, given a sufficiently large number of horizons,

T > S, the system (67) has more equations than unknowns. The system has no solution,

i.e., (67) does not hold, unless it is trivial: MS = Mj for all j ∈ {K + 1, · · · , S}. Therefore,

when recoveries are consistent under S and S, marginal utilities are identical for all original

states that belong to a consolidated state: Mi = Mk ∀i, k ∈ j, j ∈ S.

Next, in the other direction of the proof, suppose that marginal utilities are identical for

all original states that belong to a consolidated state, or Mi = Mk for all i, k ∈ j, j ∈ S.

The no-arbitrage restriction for the τ -period AD asset from current state to a single state

j ∈ {1, · · · , K} is Aτ ;1 j = Aτ ;1j, which implies

δ
τM j

M1

pt,t+τ (1, j) = δτ
Mj

M1

pt,t+τ (1, j), ∀j ∈ {1, · · · , K} and ∀τ ∈ {1, · · · , T}, (68)

where pt,t+τ (1, j) is the probability from state 1 at t to state j at t+τ and is time-dependent,

i.e., pt,t+τ (1, j) 6= pt+s,t+s+τ (1, j) in general.

Similarly, the no-arbitrage restriction for the τ -period AD asset from current state to the

coupled state S is Aτ ;1S =
∑S

j=K+1Aτ ;1j, which implies

δ
τMS

M1

pt,t+τ (1, S) =
S∑

j=K+1

δτ
Mj

M1

pt,t+τ (1, j)

= δτ
M

M1

S∑
j=K+1

pt,t+τ (1, j), ∀τ ∈ {1, · · · , T},

(69)

8



where M ≡Mj for all j ∈ S. In order to have proper probabilities under S, we also require

∑
j∈S

pt,t+τ (1, j) = 1, ∀τ ∈ {1, · · · , T}. (70)

Since we require a unique recovery under for the consolidated specification S, the solu-

tions to the time discount factor, probabilities, and ratios of marginal utilities must satisfy

equations (68)-(70) for all τ ∈ {1, · · · , T}. There are T × (K + 2) equations from (68)-

(70) and need to solve for 2K + 2 unknowns (K + 1 probabilities pt,t+1(1, j), K ratios of

marginal utilities
Mj

M1

, and one time discount factor δ).1 As we require the recovery to hold

for a sufficiently large number T of horizons, the number of equations exceeds the number

of unknowns. In general, the system does not have a solution, i.e., recovery results under

different specification are not reconcilable, unless the system and solutions are trivial. This

implies that the time discount factor, probabilities, and marginal utilities must satisfy the

consistency conditions. Hence, the recoveries under S and S are consistent.

Case 2: Coupled Current State

We consider the original specification of S = {1, · · · , S} and the consolidated specification

S = {1, K + 1, · · · , S − 1, S}, where 1 = {1, · · · , K}, K + 1 = {K + 1}, K + 2 = {K +

2}, · · · , and S = {S}. Suppose that the current state is 1 for the second (consolidated)

analyst and {1} for the first (original) analyst.

We first assume consistent recoveries under both specifications. The consistency require-

1Recall that the one-period probabilities are time-independent. Although the τ -period probabilities de-
pend on time, they can be constructed from the one-period probabilities. Thus, we just need to solve for

pt,t+1(1, j). Also,
Mj

M1

= 1 when j = 1 so that we do not need to solve for it.
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ments for this case based on the no-arbitrage restrictions of τ -period AD assets are

δ = δ

pt,t+τ (1, 1) =
K∑
j=1

Mj

M1

pt,t+τ (1, j), ∀τ ∈ {1, · · · , T}

pt,t+τ (1, j) = pt,t+τ (1, j)
1−

∑K
`=1 pt,t+τ (1, `)

1−
∑K

`=1
M`

M1
pt,t+τ (1, `)

, ∀j = j ∈ {K + 1, · · · , S} and τ ∈ {1, · · · , T}

M j

M1

=
Mj

M1

1−
∑K

`=1 pt,t+τ (1, `)

1−
∑K

`=1
M`

M1
pt,t+τ (1, `)

, ∀j = j ∈ {K + 1, · · · , S} and τ ∈ {1, · · · , T},

where pt,t+τ (1, j) is the probability from state 1 at t to state j at t+ τ and pt,t+τ (1, j) is the

probability from state 1 at t to state j at t+ τ , both time-dependent.

In order to have proper probabilities under S, we need

∑
j∈S

pt,t+τ (1, j) = 1, ∀τ ∈ {1, · · · , T}.

Using the above consistency conditions, we have

K∑
j=1

Mj

M1

pt,t+τ (1, j) +
1

H

S∑
j=K+1

pt,t+τ (1, j) = 1, ∀τ ∈ {1, · · · , T}, (71)

where H =
1−

∑K
j=1 pt,t+τ (1,j)

1−
∑K
j=1

Mj
M1

pt,t+τ (1,j)
is required to be state- and time-independent.

From (71), we have T equations. In order to have these T equations to hold with time-

invariant marginal utilities and also to keep H both state- and time-invariant, we must

require M1 = · · · = MK and, as a result, H = 1. That is, we must have Mi = Mk for all

i, k ∈ S. Therefore, when recoveries are consistent under S and S, marginal utilities are

identical for all original states that belong to a consolidated state: Mi = Mk ∀i, k ∈ j, j ∈ S.

Next, in the other direction of the proof, suppose that marginal utilities are identical for

all original states that belong to a consolidated state, or Mi = Mk for all i, k ∈ j, j ∈ S.

The no-arbitrage restriction for the τ -period AD asset from current state to a single state

10



j ∈ {K + 1, · · · , S} is Aτ ;1 j = Aτ ;1j, which implies

δ
τM j

M1

pt,t+τ (1, j) = δτ
Mj

M1

pt,t+τ (1, j), ∀j ∈ {K + 1, · · · , S} and ∀τ ∈ {1, · · · , T}. (72)

Similarly, the no-arbitrage restriction for the τ -period AD asset from the coupled current

state 1 to itself is Aτ ;1 1 =
∑K

j=1Aτ ;1j, which implies

δ
τ
pt,t+τ (1, 1) =

K∑
j=1

δτpt,t+τ (1, j), ∀τ ∈ {1, · · · , T}, (73)

where we have used the assumption that M1 = · · · = MK . In order to have proper probabil-

ities under S, we need

∑
j∈S

pt,t+τ (1, j) = 1, ∀τ ∈ {1, · · · , T}. (74)

Since we require a unique recovery under for the consolidated specification S, the solu-

tions to the time discount factor, probabilities, and ratios of marginal utilities must satisfy

equations (72)-(74) for all τ ∈ {1, · · · , T}. There are T×(S−K+2) equations from (72)-(74)

and need to solve for 2(S − K + 1) unknowns (S − K + 1 probabilities pt,t+1(1, j), S − K

ratios of marginal utilities
Mj

M1

, and one time discount factor δ). As we require the recovery

to hold for a sufficient large number T of horizons, the number of equations exceeds the

number of unknowns. In general, the system does not have a solution, i.e., recovery results

under different specification are not reconcilable, unless the system and solutions are trivial.

This implies that the time discount factor, probabilities, and marginal utilities must satisfy

the consistency conditions. Hence, the recoveries under S and S are consistent.

Finally, we note that there is only one coupled state in the consolidated specification in

the above derivation. The proof concerning multiple coupled states proceeds with identical

arguments and a straightforward modification of consolidation mapping between S and S.
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B.2 Proof of Proposition 2

Case 1: Single Current State

We first assume that the recoveries are consistent under S and S and we are given the

recovered time discount factor, marginal utilities and probabilities under the original spec-

ification. As in Figure 4, we leave the first K states in the original specification are not

consolidated. That is, the states in the consolidated model is S = {1, 2, · · · , K, S}, where

1 = {1}, 2 = {2}, · · · , K = {K}, and S = {K + 1, · · · , S}. Since we require T > S, the

consolidation S would be trivial if K + 1, i.e., S = S when S = K + 1. Thus, we impose the

number of states in the original specification S to be at least K + 2, i.e., S ≥ K + 2. As a

result, we have T > S ≥ K + 2.

Let i ∈ S and i ∈ S. In the original specification, we define hi ≡ Mi

M1
, and in the

consolidated specification define hi ≡
M i

M1

. Note that by definition h1 = h1 = 1.

Let j = j ∈ {1, · · · , K} be the single states. According to the consistency condition (42),

hj ≡
M j

M1

=
Mj

M1

,

which implies

hj = hj, ∀j = j ∈ {1, · · · , K}. (75)

Consider the coupled state S. Specializing (7) to the consolidated specification yields

Aτ ;1S = δ
τ
hSp0,τ (1, S) =

S∑
j=K+1

Aτ ;1j =
S∑

j=K+1

δτhjp0,τ (1, j), ∀τ ∈ {1, · · · , T}, (76)

where the second equality is from (38) and the last one again follows from (7).

From the consistency conditions (40) and (41), we have δ = δ and

p0,τ (1, S) = p0,τ (1, K + 1) + · · ·+ p0,τ (1, S), for all τ ∈ {1, · · · , T}.
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Thus,

Aτ ;1S = δ
τ
hSp0,τ (1, S) = δτhS

S∑
j=K+1

p0,τ (1, j), ∀τ ∈ {1, · · · , T}.

Comparing the above with (76), we have the following equation

hS =

∑S
j=K+1 hjp0,τ (1, j)∑S
j=K+1 p0,τ (1, j)

, ∀τ ∈ {1, · · · , T}. (77)

Since we have T equations from (77) but only one unknown hS, we will not have a solution in

general unless equation (77) is trivial. That is, hK+1 = hK+2 = · · · = hS = hS. Therefore, we

must have Mi = Mk for all i, k ∈ S. Thus, we conclude that when recoveries are consistent

under S and S, we have Mi = Mk for all i, k ∈ j, j ∈ S.

Next, in the other direction of the proof, suppose Mi = Mk for all i, k ∈ j, j ∈ S.

Since we have set M1 = 1, this is equivalent to letting h ≡ hK+1 = hK+2 = · · · = hS. We

still assume that we are given the recovered time discount factor, marginal utilities, and

probabilities under the original specification.

By no arbitrage, we must have Aτ ;1j = Aτ ;1 j for all j = j ∈ {1, · · · , K} and τ ∈

{1, · · · , T}. Equation (7) then implies that

δτhjp0,τ (1, j) = δ
τ
hjp0,τ (1, j), ∀j = j ∈ {1, · · · , K} and ∀τ ∈ {1, · · · , T}. (78)

Similarly, for the couple state S, we have Aτ ;1S =
∑S

j=K+1Aτ ;1j and

S∑
j=K+1

δτhp0,τ (1, j) = δ
τ
hSp0,τ (1, S), ∀τ ∈ {1, · · · , T}, (79)

where we have used the assumption that h = hK+1 = · · · = hS. In addition, we require

∑
j∈S

p0,τ (1, j) = 1,∀τ ∈ {1, · · · , T}, (80)

in order to have proper probabilities.
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Since we require a unique recovery under for the consolidated specification S, the solu-

tions to the time discount factor, probabilities, and ratios of marginal utilities must satisfy

equations (78)-(80) for all τ ∈ {1, · · · , T}. There are T × (K + 2) equations from (78)-(80)

and need to solve for (T+1)×(K+1) unknowns (T×(K+1) probabilities p0,τ (1, j), K ratios

of marginal utilities hj, and one time discount factor δ).As we have set T > S ≥ K + 2, the

number of equations exceeds the number of unknowns. In general, the equations cannot be

solved unless the solutions are trivial, implying that the time discount factor, probabilities,

and marginal utilities satisfy (40)-(42). Hence, the recoveries under S and S are consistent.

Case 2: Coupled Current State

We first assume that the recoveries are consistent under S and S and we are given the

recovered time discount factor, marginal utilities, and probabilities under the original spec-

ification. As in Figure 5, we consolidate the first K states and leave the rest S −K states

unchanged. That is, the states in the consolidated model is S = {1, K + 1, · · · , S − 1, S},

where 1 = {1, · · · , K}, K + 1 = {K + 1}, K + 2 = {K + 2}, · · · , and S = {S}. In order to

have a proper coupled state 1, we impose K ≥ 2. As before, we also require T > S.

Let i ∈ S and i ∈ S. In the original specification (7), we define hi ≡ Mi

M1
. Similarly, in

the consolidated model (46) we have hi ≡
M i

M1

, where again 1 denotes the consolidated state.

By definition, h1 = h1 = 1.

From the consistency condition (49), we know that for all states j = j ∈ {K + 1, · · · , S}

that are not consolidated, the ratio of hj and hj does not depend on the state, i.e.,

H ≡
hj
hj

=
M j

Mj

M1

M1

, ∀j = j ∈ {K + 1, · · · , S}. (81)

Note that even if there is only one state that is not consolidated, equation (81) still holds.

For probabilities, we express the second equation in (48) as

p0,τ (1, j) =
1

H
p0,τ (1, j), ∀τ ∈ {1, · · · , T}. (82)

We now move on to the states that are consolidated into state 1. Specializing equation
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(7) to state 1 gives

Aτ ;1 1 = δ
τ
p0,τ (1, 1) =

K∑
j=1

Aτ ;1j =
K∑
j=1

δτhjp0,τ (1, j), (83)

where the second equality is from (45) and the last equation is from (7).

From the consistency conditions (47) and (48), we have δ = δ and p0,τ (1, 1) = h1p0,τ (1, 1)+

h2p0,τ (1, 2) + · · · + hKp0,τ (1, K) for all τ ∈ {1, · · · , T}. Using the fact that Aτ ;1j = Aτ ;1 j

when j = j are not consolidated and (83), we can express (46) as

δτ

Ñ
K∑
j=1

hjp0,τ (1, j) +
S∑

j=j=K+1

hj
h̄j
p0,τ (1, j)

é
= δ

τ
, ∀τ ∈ {1, · · · , T},

which, together with the consistency condition (47), implies

K∑
j=1

hjp0,τ (1, j)︸ ︷︷ ︸
=p0,τ (1,1)

+
1

H

S∑
j=K+1

p0,τ (1, j)︸ ︷︷ ︸
=
∑S
j=K+1

p0,τ (1,j)

= 1 (84)

for all τ ∈ {1, · · · , T}. Since we have T equations from (84) but only one unknown H, we

will not have a solution in general unless h1 = h2 = · · · = hK = 1 and H = 1. That is, we

must have Mi = Mk for all i, k ∈ S. Thus, we conclude that when recoveries are consistent

under S and S, we have Mi = Mk for all i, k ∈ j, j ∈ S.

Next, in the other direction of the proof, suppose Mi = Mk for all i, k ∈ j, j ∈ S. Since

we have set M1 = 1, this is equivalent to letting h1 = h2 = · · · = hK = 1. We still assume

that we are given the recovered time discount factor, marginal utilities, and probabilities

under the original specification.

By no arbitrage, we must have Aτ ;1j = Aτ ;1 j for all j = j ∈ {K + 1, · · · , S} and

τ ∈ {1, · · · , T}. Equation (7) then implies that

δτhjp0,τ (1, j) = δ
τ
hjp0,τ (1, j), ∀j = j ∈ {K + 1, · · · , S} and ∀τ ∈ {1, · · · , T}. (85)
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Similarly, for the couple state 1, we have Aτ ;1 1 =
∑K

j=1Aτ ;1j and

K∑
j=1

δτp0,τ (1, j) = δ
τ
p0,τ (1, 1), ∀τ ∈ {1, · · · , T}, (86)

where we have used the assumption that h1 = · · · = hK = 1 and h1 = 1. We also require

∑
j∈S

p0,τ (1, j) = 1, ∀τ ∈ {1, · · · , T}, (87)

in order to have proper probabilities.

Since we require a unique recovery under for the consolidated specification S, the solu-

tions to the time discount factor, probabilities, and ratios of marginal utilities must satisfy

equations (85)-(87) for all τ ∈ {1, · · · , T}. There are T × (S −K + 2) equations from (85)-

(87) and need to solve for (T + 1)× (S −K + 1) unknowns (T × (S −K + 1) probabilities

p0,τ (1, j), S −K ratios of marginal utilities hj, and one time discount factor δ). As we have

set K ≥ 2 and T > S, we have T > S − K + 1, i.e., the number of equations exceeds the

number of unknowns. In general, the equations cannot be solved unless the solutions are

trivial, which implies that the time discount factor, probabilities, and marginal utilities must

satisfy (47)-(49). Hence, the recoveries under S and S are consistent.

Finally, we note that there is only one coupled state in the consolidated specification in

the above derivation. The proof concerning multiple coupled states proceeds with identical

arguments and a straightforward modification of consolidation map between S and S.

B.3 Proof of Proposition 3

Since δ = δ is a necessary condition for consistency, if S and S are consistent, (55) becomes

f = [C′A′τAτC]
−1

C′A′τδ = [C′A′τAτC]
−1

C′A′τAτ f ,
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which can be rearranged to

[C′A′τAτC] f = C′A′τAτ f . (88)

Recall that the ith entry of f is denoted as h−1i and the ith entry of f is h
−1
i .

Case 1: Single current state

We consider the original specification of S = {1, · · · , S}, which we are given, and the con-

solidated specification S = {1, 2, · · · , K, S}, where 1 = {1}, 2 = {2}, · · · , K = {K}, and

S = {K + 1, · · · , S}. Even though we only consider one coupled state here, it is straightfor-

ward to generalize the proof.

Suppose S and S are consistent. Since the proof in Section B.2 does not restrict the time

horizon T and the consistency conditions are derived from the no-arbitrage requirements, we

know that Mi = Mk, ∀i, k ∈ j, j ∈ S. The only difference is that under the OLS approach,

the marginal utilities need to also satisfy (88).

We subtract the RHS from LHS in (88) and write out explicitly. The n-th row (n ∈

{1, · · · , K}) is

Rn =
T∑
τ=1

Aτ ;1n

[
K∑
m=1

Aτ ;1mh
−1
m + (Aτ ;1,K+1 + · · ·+ Aτ ;1S)h

−1
S

]
−

T∑
τ=1

Aτ ;1n

S∑
m=1

Aτ ;1mh
−1
m

and the last row is

RK+1 =
T∑
τ=1

[
(Aτ ;1,K+1 + · · ·+ Aτ ;1S)

K∑
m=1

Aτ ;1mh
−1
m + (Aτ ;1,K+1 + · · ·+ Aτ ;1S)2h

−1
S

]

−
T∑
τ=1

(Aτ ;1,K+1 + · · ·+ Aτ ;1S)
S∑

m=1

Aτ ;1mh
−1
m .

Because states 1, · · · , K are single states, according to the consistency condition (42)

the marginal utility ratios in those states must be the same under both specifications, i.e.,

17



hi = hi for i ∈ {1, · · · , K}. Therefore, the equations above for each row can be rewritten as

Rn =
T∑
τ=1

Aτ ;1n

[
(Aτ ;1,K+1 + · · ·+ Aτ ;1S)h

−1
S −

S∑
m=K+1

Aτ ;1mh
−1
m

]
, n ∈ {1, · · · , K} (89)

and

RK+1 =
T∑
τ=1

(Aτ ;1,K+1 + · · ·+ Aτ ;1S)

[
(Aτ ;1,K+1 + · · ·+ Aτ ;1S)h

−1
S −

S∑
m=K+1

Aτ ;1mh
−1
m

]
. (90)

Since Mi = Mk for all i, k ∈ j, j ∈ S, we have hK+1 = hK+2 = · · · = hS = hS. Hence,

R1 = · · · = RK+1 = 0.

Next, suppose Mi = Mk for all i, k ∈ j, j ∈ S. This is equivalent to letting hK+1 =

hK+2 = · · · = hS. Again, the proof of Proposition 2 only relies on the no-arbitrage conditions,

the result that the best-fit recoveries under S and S are consistent still holds. It is then

trivial to show that (88) holds.

Case 2: Coupled current state

We consider the original specification of S = {1, · · · , S} and the consolidated specifica-

tion S = {1, K + 1, · · · , S − 1, S}, where 1 = {1, · · · , K}, K + 1 = {K + 1}, K + 2 =

{K + 2}, · · · , and S = {S}. Even though we only consider one coupled state here, it is

straightforward to generalize the proof.

Suppose S and S are consistent. Since the proof in Section B.2 does not restrict the time

horizon T and the consistency conditions are derived from the no-arbitrage requirements, we

know that Mi = Mk, ∀i, k ∈ j, j ∈ S. The only difference is that under the OLS approach,

the marginal utilities need to also satisfy (88).
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We subtract the RHS from LHS in (88) and write out explicitly. The first row is

R1 ≡
T∑
τ=1

[
(Aτ ;11 + · · ·+ Aτ ;1K)2h

−1
1 + (Aτ ;11 + · · ·+ Aτ ;1K)

S∑
m=K+1

Aτ ;1mh
−1
m

]

−
T∑
τ=1

(Aτ ;11 + · · ·+ Aτ ;1K)
S∑

m=1

Aτ ;1mh
−1
m .

The n-th row (n ∈ {K + 1, · · · , S}) is

Rn ≡
T∑
τ=1

Aτ ;1n

[
(Aτ ;11 + · · ·+ Aτ ;1K)h

−1
1 +

S∑
m=K+1

Aτ ;1mh
−1
m

]
−

T∑
τ=1

Aτ ;1n

S∑
m=1

Aτ ;1mh
−1
m .

Because states K + 1, · · · , S are single states, the marginal utilities in those states must

be the same under both specifications, i.e., hi = hi for i ∈ {K + 1, · · · , S}. Therefore, the

equations above for each row can be rewritten as

R1 =
T∑
τ=1

(Aτ ;11 + · · ·+ Aτ ;1K)

[
(Aτ ;11 + · · ·+ Aτ ;1K)h

−1
1 −

K∑
m=1

Aτ ;1mh
−1
m

]
(91)

and

Rn =
T∑
τ=1

Aτ ;1n

[
(Aτ ;11 + · · ·+ Aτ ;1K)h

−1
1 −

K∑
m=1

Aτ ;1mh
−1
m

]
, n ∈ {K + 1, · · · , S}. (92)

Also, since hi = hk, ∀i, k ∈ j, j ∈ S, we know that h1 = · · · = hK = h1 = 1, which

implies that R1 = 0. By similar arguments, Rn = 0 for all n ∈ {K + 1, · · · , S}. Hence, the

OLS equation (88) holds when S and S are consistent.

Next, suppose Mi = Mk for all i, k ∈ j, j ∈ S. This is equivalent to letting h1 = h2 =

· · · = hK . Again, the proof of Proposition 2 only relies on the no-arbitrage conditions, the

result that the best-fit recoveries under S and S are consistent still holds. It is then trivial

to show that (88) holds.
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