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Abstract

Recovery, the process of uniquely determining market’s belief, time and risk prefer-

ences from asset prices, requires a subjective state-space specification of the underlying

economy that is not observed before the recovery is implemented. Different subjective

input specifications lead to different recovery results that, albeit unique under the

respective specifications, are almost surely inconsistent with each other. This consis-

tency issue prevails universally in the original, generalized, and perturbative recovery

approaches, and is not resolved by the sophistication of the input specification, perfect

(error-free and infinite) price data, or the enforcement of required recovery assump-

tions. The direction of the recovery inconsistency, or the signed difference between the

recovered and underlying quantities, is influenced by both the probability and marginal

utility distributions of the underlying economic states such as the presence of a rare

disaster state. The consistency requirement highlights a new and general challenge for

the recovery paradigm.
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1 Introduction

The recovery concept in asset pricing sets a highly relevant and challenging task of sepa-

rately identifying the market’s risk and time preferences and belief about future states of

the economy from asset prices. The concept is based on a fundamental no-arbitrage pricing

result that, in equilibrium, an asset’s price is equal to the expected discounted value of the

asset’s future cash flows, where the expectation and discounting are characterized respec-

tively by market’s belief and preferences toward economic uncertainties and risks in the cash

flows. While being highly relevant as a direct asset-based estimation of the market’s impor-

tant characteristics, the recovery paradigm’s principal challenge is how to unambiguously

disentangle the market’s preferences and belief using only asset prices.

Ross (2015)’s Recovery Theorem addresses this challenge by identifying sufficient con-

ditions on cash flow and pricing dynamics, under which today’s price data of assets across

different maturities suffice to simultaneously and uniquely determine the market’s prefer-

ences and probability distribution of future states of the economy. While the Recovery

Theorem is elegant, its applications and merits depend on two key aspects, namely, the em-

pirical content of the theorem’s underlying assumptions and the theorem’s implementability

in practice. The current paper examines the recovery’s implementability aspect and demon-

strates a robust recovery consistency issue. This consistency issue prevails in implementing

both the original and generalized versions of the Recovery Theorem, independent of the em-

pirical content of the theorem’s underlying assumptions. A recovery paradigm that yields

consistent outcomes hence remains challenging and elusive.

While the recovery process requires a state space specification for the underlying market

model to start with, this specification is not observed prior to the process implementation

and so is a subjective input in the recovery. The recovery consistency then is a natural

requirement that the results recovered with different input specifications be mutually con-

sistent because these results pertain to the same underlying market model. Integrating the
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consistency concept into the recovery framework motivates and informs three main findings

of the paper. First, we establish a necessary and sufficient condition for the recovery con-

sistency, whose strictness affirms the prohibitive nature of a consistent recovery. Second,

we identify the origin of the recovery consistency issue with an inevitable tradeoff between

the sophistication of the input specification and a non-linear error buildup of the recovery

process, implying that a finer state space specification does not resolve the consistency issue

in the recovery. Third, we identify the direction (i.e., overshooting or undershooting) of the

recovery inconsistency and the responsible economic features in a model calibrated to the

U.S. economy.

Both the conceptual and practical aspects are crucial for the Recovery Theorem and

its applications. Conceptually, assuming a time-separable preference and time-homogeneous

(or, Markovian) state transition dynamics, the theorem establishes the dominant and unique

eigenvalue and eigenvector of the one-period Arrow-Debreu (AD) price matrixA respectively

as the time discount factor and vector of (inverse) marginal utilities of the underlying market.

Practically, since A is not fully observed from price data, the theorem’s applicability centers

on how to obtain this matrix.1 It is this important quest for a consistent determination of

the one-period AD price matrix that elucidates the aforementioned findings most directly

and intuitively.

First, albeit not fully observed, the one-period AD price matrix A can be implied from a

procedure involving the current prices of longer-term AD assets initiated on the current state

today but with various maturities. Specifically, when a subjective input specification of S

states is adopted, this procedure implies a S×S matrix A needed for the recovery. Another

subjective choice of S states (say, a coarser specification, S < S) implies a corresponding

S × S AD price matrix A. A key issue for this procedure is that the market information

1The AD price matrix A contains the prices of all one-period AD assets Aij , where i denotes the state
in which the AD contract is initiated and j the next-period contingent state in which the contract pays off.
On any day, one can only observe the current prices of AD contracts initiated on a single current state (of
that day). Hence, the entire AD price matrix A is not fully and directly observed on any day.
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contained in the fine AD asset contracts and prices associated with S fine states is irreversibly

lost in the coarser AD asset contracts and prices associated with S coarser states. The loss

of information then results in irreconcilable market’s characteristics recovered from A and

A, except in a special premise of the underlying market model. Our paper’s necessary

and sufficient condition for the recovery consistency identifies and quantifies this special

premise. Namely, if and only if all fine states (among S states) that belong to a coarser

state (among S states) are associated with identical characteristics (marginal utilities and

probabilities), then the recovery results associated with S and S states are consistent with

each other. Intuitively, this condition is what is precisely needed to prevent an inadvertent

loss of information in picking a subjective specification. Evidently, the condition is highly

restrictive, indicating the prevalence of the recovery consistency issue.

Second, the recovery consistency issue originates endogenously from the determination

of the implied AD price matrix A. On one hand, a more sophisticated specification (a larger

number S of specified states) offers higher flexibility to accommodate the underlying market

model. On the other hand, it requires a larger recursive equation system to solve for S × S

matrixA, involving the pricing equations of longer-term AD assets maturing in S+1 different

periods. As a result, even a small deviation between the underlying and input specifications

(thanks to a good approximation associated with a large S) reverberates recursively (com-

mensurately with the large S) in the recovery system, amplifies the approximation error’s

buildup and results in the recovery inconsistencies. In the discrete setting (i.e., finite S),

this tradeoff is demonstrated analytically using a perturbative analysis. In the continuous

setting (i.e., the infinitesimal limit of state space grid partition and unbounded S), this

tradeoff is revealed in spurious negative AD asset prices (spurious arbitrage opportunities)

and hence recovery inconsistencies. This persistent tradeoff signifies that the sophistication

of the input specification and data quality do not alleviate the recovery consistency issue

unless the underlying market model satisfies the strong necessary and sufficient condition

discussed earlier.
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Third, the direction of inconsistencies in the recovery results depends on not only the

input specification but also the economic features of the underlying market model. To

understand these features and the resulting inconsistency direction, we first calibrate the

underlying market model to the U.S. economy, then implement and analyze its recovered

version. The calibrated underlying model features a rare disaster state, which stylizes the

U.S. economy in that this state is associated with an elevated marginal utility but exceed-

ingly small probability.2 To illustrate, assume that current state is a normal state but the

input (subjective) specification coarsely and unknowingly confounds it with the underlying

rare disaster state. This tangling of the normal (current) and the disaster states increases the

perceived current marginal utility while also moderating the perceived magnitude of the dis-

aster in the future (compared to their actual counterparts in the underlying market model).

As a result, the insurances against (i.e., the AD assets paying in) the adverse (confounded)

state are perceived to be cheaper, which translates into an undershooting of the recovered

probability to remain in the current state (and a overshooting of the recovered probability to

transit to another state), compared to the actual counterpart probabilities in the underlying

model.

The standard improvement in the risk-neutral option pricing and the associated volatility

surface determination with the refinement of the state space grid does not apply in the

Recovery Theorem. This is because the option pricing concerns only contracts and prices

initiated on the current state today. Whereas, the Recovery Theorem aims to determine the

transition probabilities between any two possible states, hence requires the implied prices

of AD assets initiated on states different from the current one. It is this implication of the

full AD price matrix that eludes the standard improvement associated with the state space

grid refinement. Furthermore, while a unique recovery result is obtained per a subjective

input specification, this uniqueness does not preclude the inconsistencies across the results

2That is, concerning the rare disaster state, the pricing effect of its high marginal utility is dominated by
its small likelihood. As a result, current prices of insurances against (i.e., AD assets paying off in) the rare
disaster state remain moderate.
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recovered associated with different input specifications in practice. These features highlight

the prevalence and relevance of the consistency issue in the recovery paradigm.

Related literature: There has been a long-standing interest in the recovery of market’s

belief, risk and time preferences from observed asset prices, given that a unambiguous disen-

tanglement between these characteristics is non-trivial. The risk-neutral approach is content

with conditioning on a (fictitious) null risk aversion and recovers the associated risk-neutral

belief from option prices as in Breeden and Litzenberger (1978). The advent of Ross (2015)’s

Recovery Theorem, which conceptually formulates sufficient conditions needed to disentangle

market’s belief and risk preference, has renewed recent interests in the recovery. The empiri-

cal performance of the recovery based on this theorem remains elusive. A literature assesses

the empirical content of the Recovery Theorem’s assumptions. Borovička et al. (2016) and

Hansen and Scheinkman (2017) relate the theorem’s assumptions to the recoverability of

only the transitory component of Alvarez and Jermann (2005)’s SDF growth decomposition.

Bakshi et al. (2018), Qin et al. (2018) and Jackwerth and Menner (2020) examine and pro-

vide evidence for counterfactual implications of these assumptions on asset prices. Taking

all assumptions of the Recovery Theorem as given, our paper complements this literature

by focusing on the implementability and consistency aspects of the recovery approach. Al-

together, these findings on the recovery paradigm’s challenges indicate two (non mutually

exclusive) possibilities. First, surveys remain the direct and informative channel to learn

about market’s belief and their rich and complex contingent investment decisions Giglio

et al. (2022). Second, under some weak assumptions on market’s behaviors and without

invoking specific parametric models, asset price data can only provide us with some useful

bounds on market’s expectations as demonstrated by, e.g., Martin (2017) and Gormsen and

Koijen (2020).

Another literature aims to generalize the Recovery Theorem by extending its premise

or relaxing its restrictive assumptions. Carr and Yu (2012) derive the recovery in a con-

tinuous setting given bounded underlying stochastic state variables. Walden (2017) gener-
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alizes the recovery to settings with an unbounded support of the state dynamics. Qin and

Linetsky (2016) extend Ross’s recovery to continuous-time Markov processes. Huang and

Shaliastovich (2014) consider the recovery in a recursive utility framework. Dillschneider and

Maurer (2019) discuss the Perron-Frobenius operator theory in recovery. Martin and Ross

(2019) discuss the relationship between the recovered time preference and the unconditional

expected return on long-maturity bonds. Jensen et al. (2019) propose a generalized recovery

approach by relaxing the time homogeneous assumption and accommodating a growing state

space. Pazarbasi et al. (2023) provide a bound on the dispersion of beliefs in a sentimental

recovery setting for both complete and incomplete markets. Related to and built on this

literature, our paper examines the recovery consistency issue for both original, generalized,

and approximate (best-fit) recovery approaches. Several papers examine the sensitivity and

stability issue related to the recovery process. Walden (2017) shows that a recovery process

can be unstable under a small perturbation in state prices. Dubynskiy and Goldstein (2013)

consider the effect of boundary conditions on the recovery process’s stability. In a related

principal eigenproblem in asset pricing, Borovička and Stachurski (2020) derive a necessary

and sufficient condition for the existence of a unique and stable value function for a class

of recursive utilities. Our paper formalizes the recovery consistency notion in terms of how

sensitive the recovery results are under changes in the input specification.

The paper is organized in accordance with the main findings. Section 2 introduces the

concept of, and presents a necessary and sufficient condition for, the consistency in the re-

covery process. Section 3 explains intuitively and demonstrates quantitatively the origin of

the recovery consistency issue in terms of a tradeoff between the specification’s sophistica-

tion and the error buildup of the recovery process. Section 4 examines the direction of, and

identify the economic features responsible for, the recovery inconsistency in a model cali-

brated to the U.S. economy. Section 5 concludes. Appendices A, B, and C present technical

derivations, calibration details, and extensions of the paper’s findings.
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2 Recovery and Consistency

We describe Ross (2015)’s basic framework and implementation procedure of recovery (Sec-

tion 2.1), and discuss the consistency concept for recovery (Section 2.2).

2.1 Recovery

The basic recovery framework can be described in either discrete or continuous settings,

offering an integral perspective on the recovery and its consistency issue in different limits

of the state space specification.

Discrete Setting

The basic market model is in a discrete setting, in which the state and time are denoted

by (i, t), with {i} ∈ S ≡ {1, . . . , S} and t ∈ {0, . . . , T}. We assume that the financial

market is complete and free of arbitrage opportunities. As a result, prices of financial assets

are determined by the no-arbitrage pricing principle, which features a unique stochastic

discount factor (SDF). Let Mt,t+1(i, j) denote the growth of the SDF associated with the

transition from state time (i, t) to (j, t+1). Given a complete financial market, the SDF can

be identified with the marginal utility of the representative agent in the market model. The

recovery process aims to uniquely determine the state probability distribution in the physical

measure and the representative agent’s preference from asset prices. Such a recovery process

relies on the following two assumptions.

Assumption A1. The preference is time-separable, or the SDF growth has the following

functional form: Mt,t+1(i, j) = δ
Mj

Mi
, ∀t ∈ {0, . . . , T−1}, ∀{i}, {j} ∈ S, where δ is a constant

parameter and Mi is a function of state {i} (but not time).

Assumption A2. The state transition dynamics are time-homogeneous, or the transition

probabilities in the physical measure are time-independent: pt,t+1(i, j) = pi,j, ∀t ∈ {0, . . . , T−

1}, ∀{i}, {j} ∈ S.
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The first assumption can be motivated from an economic perspective of a representative

agent’s time-separable utility function, and the second assumption from a Markovian per-

spective of the state transition dynamics. In this picture, δ and Mi respectively quantifies

the representative agent’s time discount factor and marginal utility. Under these assump-

tions, the unique recovery of preference and state probability distribution can be derived as

follows.

Consider a state-contingent financial asset that pays an amount equal to the inverse of

marginal utility, xj ≡ 1
Mj

, in state {j} next period. If the current period’s state is {i}, the

no-arbitrage current price Pit

(
1
M

)
of this asset is

Pit

Å
1

M

ã
= Eit

ï
Mt,t+1(i, j)

1

Mj

ò
= δ

1

Mi

, or Eit [Mt,t+1(i, j)xj] = δxi, ∀{j} ∈ {1, . . . , S},

(1)

where we have used Mt,t+1(i, j) = δ
Mj

Mi
(Assumption A1). Alternatively, the financial asset

above can also be priced as a portfolio with weight xj in the respective one-period Arrow-

Debreu (AD) asset Aij offering a unit payoff if (and only if) the next period’s state is {j},

where {j} ∈ {1, . . . , S}. Hence, the current price Pit

(
1
M

)
(1) can also be expressed as,3

Pit

(
1
M

)
=
∑S

{j}=1Aijxj. Identifying this price with (1) implies that

∑
{j}∈S

Aijxj = δxi, or Ax = δx, with xi =
1

Mi

, ∀{i} ∈ {1, . . . , S}, (2)

where A denotes the S × S one-period AD price matrix (whose entries are AD prices Aij)

and x denotes the S × 1 vector of inverse marginal utilities. Throughout, we employ bold

characters to denote matrix and vector quantities. Equation system (2) provides a conceptual

interpretation that when preferences are time-separable (Assumption A1), the time discount

factor and the inverse of marginal utilities are respectively the eigenvalue and eigenvector of

the one-period AD price matrix A. In the absence of arbitrage opportunities, all entries of

3For notational conveniences, we also use the notation Aij to denote the current price at (i, t) of the AD
asset that offers a unit payoff at (j, t+ 1) and zero otherwise.
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AD price matrixA are strictly positive. MatrixA therefore has a unique eigenvector x whose

elements are strictly positive per Perron-Frobenius theorem. This eigenvector is associated

with the largest and positive eigenvalue δ. Since marginal utilities and time discount factor

are also strictly positive, a unique recovery is achieved by identifying the Perron-Frobenius

dominant eigenvalue and eigenvector of the AD price matrix with the time discount factor

and marginal utilities respectively. The transition probability pt,t+1(i, j) from (i, t) to (j, t+1)

then follows from the pricing equation for AD assets in the physical measure,

Aij = Eit [Mt,t+1(i, s)1j(s)] =⇒ pt,t+1(i, j) = δ−1Aij
Mi

Mj

= δ−1Aij
xj

xi

, (3)

where the indicator function 1j(s) denotes the payoff of AD asset Aij.

At any time t, we do not observe the price Akj of AD assets that are initiated on states

k different from the current state at t, i.e., we do not directly observe the entire S × S

one-period AD price matrix A in the financial market. It is the Assumption A2 on the

time-homogeneity of the state transition dynamics that help to imply this matrix A for the

recovery process. Specifically, let Aτ ;ij be the current price of τ -period AD asset initiated

on the current state {i} that offers a unit payoff if the state in τ periods is {j} and zero

otherwise. Prices {Aτ+1;ij}, {j} ∈ S, of (τ + 1)-period AD assets initiated on the same

current state {i} are obtained recursively by rolling τ -period AD assets {Aτ ;ij} one more

period. The time invariance of the one-period AD price matrix (Assumption A2) allows for

stacking these pricing equations recursively for τ ∈ {1, . . . , T},


A2;i1 . . . A2;iS

A3;i1 . . . A3;iS

... . . .
...

Aτ+1;i1 . . . Aτ+1;iS


︸ ︷︷ ︸

≡Aτ+1

=


Ai1 . . . AiS

A2;i1 . . . A2;iS

... . . .
...

Aτ ;i1 . . . Aτ ;iS


︸ ︷︷ ︸

≡Aτ

×


A11 . . . A1S

...
. . .

...

AS1 . . . ASS


︸ ︷︷ ︸

≡A

,
(4)
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where the one-period AD price Aij is the abbreviated version of the full notation A1;ij,

∀{i}, {j}. By definition, both matrices Aτ and Aτ+1 record price data of AD assets initiated

on the same current (today) state i, and hence are observable (today) in the financial market.

When the price data of non-redundant AD assets maturing across S + 1 different periods

(or maturities τ ∈ {1, . . . , S} and τ +1 ∈ {2, . . . , S +1} in (4)) is collected, linear equations

(4) is a just-identified system that solves for the one-period AD price matrix A needed in

the recovery process (2). The recovery consistency issue is demonstrated and discussed in

Appendix C.1 for a generalized recovery setting that relaxes Assumption A2 and in Appendix

C.2 for a best-fit recovery setting that utilizes available price data that are more than required

in a just-identified recovery system (4). Next, we briefly discuss the recovery process in the

continuous setting, which helps to illustrate the recovery consistency issue at the infinitesimal

limit of the discrete setting as discussed in the next section.

Continuous Setting

Let the market model be driven by a stochastic state variable yt in continuous time. For

ease of exposition, we assume that the state variable yt is one-dimensional diffusion process

dyt+dt

yt
=

yt+dt − yt
yt

= µydt+ σydBt = µQ
y dt+ σydB

Q
t , (5)

where Bt and BQ
t are standard Brownian motions in the physical and risk-neutral measures

respectively. The drift coefficients µy, µQ
y and volatility σy are subject to the recovery

process and can be state-dependent, in which case they are processes adapted to the natural

filtration generated by Bt and BQ
t .

4 As the state variable, yt drives the SDF M(yt) and all

other equilibrium quantities of the market model.

The recovery process in the continuous setting starts with identifying the pricing operator

that is the counterpart to the AD price matrix in discrete setting. Let Adt,ij denote the

4In special cases in which y is the price of traded assets such as equities or equity indexes, the risk-neutral
drift coefficient coincides with the risk-free rate, µQ

y = r(y).
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current price of the AD asset offering a unit payment only if the state at an infinitesimal

period τ = t + dt is {j}. Consider the contingent asset (1) whose payoff at time τ equals

the inverse of the marginal utility, x(yτ ) ≡ 1
M(yτ )

. Comparing the pricing of this contingent

asset using the risk-neutral measure with the pricing equation (1) using AD assets maps the

discrete and continuous pricing operations in short and long time horizons,5

 Adt ←→ 1+ dtDQ,

At ←→ exp
Ä∫ t

dsDQ
ä
,

where DQ ≡ yµQ
y

d

dy
+

1

2
y2σ2

y

d2

dy2
− r(y), (6)

where DQ is the infinitesimal operator in the risk-neutral measure, r(y) is the short-term

interest rate process, and the exponential operator exp
Ä∫ t

dsDQ
ä

is understood as the

power series of DQ. Because the risk-neutral parameters {µQ
y , σy} can be estimated from

option price data as in Breeden and Litzenberger (1978)’s semi-parametric approach, the

risk-neutral operator DQ can also be constructed from price data. 6

Since the infinitesimal operator DQ plays the preeminent role of the AD matrix A in pric-

ing traded assets, it also replaces A (2) in the continuous-setting recovery process. Specif-

ically, at short-term horizons, the recovery eigenvalue problem (2) reduces to Adtx = δdtx.

In the limit of infinitesimal (continuous) time interval dt→ 0, an application of the mapping

(6) yields a continuous-time expression for this eigenvalue problem (see also Footnote 5)

Adtx = δdtx←→
(
1+ dtDQ

)
x(y) = (1+ dt log δ)x(y)

5First, in the infinitesimal period, the risk-neutral pricing of the contingent asset paying xt+dt =
1

Mt+dt

(1) is EQ
t

[
e−rtdtxt+dt

]
= δdtxt. To order dt (using the state variable process (5) and the Feynman-Kac

differential representation for the risk-neutral expectation on the right hand side), this equation becomes¶
1 +
Ä
yµQ

y
d
dy + 1

2y
2σ2

y
d2

dy2 − r
ä
dt
©
xt = {1 + (log δ) dt}xt. Second, in terms AD assets, the pricing of the

same contingent asset is Adtxt = δdtxt. The identification of these two pricing equations gives rise to the
mapping in (6) and the expression for DQ therein.

6Bakshi et al. (2003) derive model-independent analytical formulas for first four risk-neutral moments
of state variables in term of integrals of option prices. Dubynskiy and Goldstein (2013) show that price
P (dy) of contract of payoff dy identifies µQ

y , and price P (dy2) of contract of payoff (dy)2 identifies σ2
y. Large

and discontinuous changes in state variable y can also be modeled by incorporating jump dynamics into the
infinitesimal operator DQ.
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or equivalently, DQx(y) = −ρx(y), where: ρ = − log δ, δ = e−ρ. (7)

Note that ρ is the time discount rate in the continuous time. Using the expression (6) for

the infinitesimal operator, the last equation is a differential equation in continuous setting

1

2
y2σ2

y

d2x(y)

dy2
+ yµQ

y

dx(y)

dy
− r(y)x(y) = −ρx(y). (8)

Carr and Yu (2012) show that this differential equation has a unique positive solution x(y)

(and the associated discount rate ρ) when (i) the state variable y is a bounded diffusion pro-

cess, and (ii) appropriate Sturm-Liouville boundary conditions are imposed on the boundary

of the support of y. In such a premise, Equation (8) presents the recovery equation in the

continuous setting. Proceeding from short- to long-term horizons via the integral operator (6)

in the continuous setting corresponds to rolling AD assets over one more period recursively

(4) in the discrete setting and offers a unified perspective on the recovery process. Section

2.2 below discusses the recovery consistency requirement and employs the continuous setting

as a limit to illustrate a robust recovery consistency issue.

2.2 Consistency

The recovery process requires a specification of the state space, e.g., the number S of states

in the discrete setting (2). Since such a specification is not observed prior to the recovery

process, it is subject to the discretion of the analyst who implements the recovery. It is

then important to understand the impact of a subjective state space specification on the

recovery results. Specifically, the recovery consistency poses the question on whether the

two different sets of recovery results, recovered respectively and uniquely in two different

subjective state space specifications, are consistent with each other. The current section

formalizes the consistency notion in recovery and analyzes it in both discrete and continuous

settings.
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Discrete Setting

A thought experiment helps to explain the important role of the state space specification

in a consistent recovery process. Since the number S of states is not observed, consider

two analysts adopting two different and subjective (input) state space specifications, S =

{1, . . . , S} of S states and S = {1, . . . , S} of S states. The thought experiment starts with

mapping and consolidating the two input state space specifications to guide a comparison of

the recovery results associated with these specifications.

Consolidation: Without loss of generality, let S < S. We refer to S as the original

specification and S as the consolidated specification of the state space, which are presumed

by two different analysts recovering the same underlying market model.7 A state {j} ∈ S in

the consolidated specification is referred to either as (i) a single state if it is identical to an

original state {j} ≡ {j}, or (ii) a coupled state if it is composed of multiple original states

{j} ⊃ {j}. Throughout, we employ an overbar to denote quantities associated with the

consolidated specification S. A simple example illustrates the mapping and consolidation of

the two state space specifications.

Example 1 (State Space Specifications and Consolidation) The first (original) state

space specification has three states S = {1, 2, 3}, and the second (consolidated) has two states

S = {1, 2}. The first consolidated state is identical to the first original state, {1} = {1},

i.e., {1} is a single state. The second consolidated state is composed of the two remaining

original states, {2} = {2, 3}, i.e., {2} is a coupled state.

The comparison and reconciliation of the recovery results proceed differently for single and

coupled states. For a single state, we directly compare the recovery results in S and S. For

a coupled state, a consolidation process is needed for the comparison. We first aggregate the

recovery results over all states in specification S that correspond to the coupled state in S
7Hence, the references of the original and consolidated specifications are purely conventional since the

analysts do not observe the true state space specification.
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Figure 1: An illustration of different state space specifications S (left panel) and S (right panel),
and the consolidation scheme that relates these specifications in Example 1.

before making the comparison. For the specific Example 1, the consolidation and comparison

are as follows. We directly compare the recovery results (i.e., marginal utility and transition

probabilities) concerning state {1} in S and the single {1} in S, and aggregate and compare

the recovery results concerning states {2, 3} in S and the coupled state {2} in S.

Consistency conditions: Given that the same underlying (objective) model drives asset

prices in the market, recovery results obtained by analysts with different subjective specifi-

cations are subject to the consistency requirement so that these recovery results consistently

pertain to the same underlying market model. Intuitively, the recovery consistency require-

ment amounts to recovering identical values for (i) time discount factors, (ii) marginal util-

ities in single states, and (iii) probabilities for transitions among single states (and coupled

states, after the appropriate consolidation is performed). When the consistency conditions

are violated, the two sets of recovered characteristics are incompatible, so that at least

one of them is also incompatible with the set of objective characteristics of the underlying

market model. The consistency conditions present falsification criteria for the state space

specification employed in the recovery process.

To illustrate the formulation of the consistency conditions, suppose that {1} is the cur-

rent underlying state in Example 1. Since this is a single state, {1} ≡ {1} (Figure 1), both

analysts correctly perceive this same state as the current state in their respective specifi-

cations S and S. The consistency conditions for the time discount factor and transition
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probabilities recovered by the analysts are direct,

δ = δ, pt,t+1(1, 1) = pt,t+1(1, 1), pt,t+1(1, 2) = pt,t+1(1, 2) + pt,t+1(1, 3), ∀t. (9)

The consistency conditions for the recovered marginal utilities are indirect, i.e., being implied

from the pricing of traded assets. The two analysts observe AD asset prices traded in the

financial market and interpret these contractual prices in accordance with their subjective

specifications. As their perceived current states are identical ({1} = {1}) in the current

illustration, they interpret an identical AD price contracted on these states A1 1 = A11. But

as their non-current states are not identical ({2} ≡ {2, 3} ≠ {2}, {3}), they interpret different

AD prices contracted on these states. Specifically, these prices are related as A1 2 = A12+A13.

Substituting AD prices from the pricing equation (3) into this AD asset price relation (and

using the consistency conditions (9)) implies the consistency condition for the recovered

marginal utilities,

M2

M1

=
M2

M1
pt,t+1(1, 2) +

M3

M1
pt,t+1(1, 3)

pt,t+1(1, 2) + pt,t+1(1, 3)
. (10)

Appendix A (Equations (62), (67)) formulates general consistency conditions for Ross’s re-

covery approach, and Appendix C.1 (Equations (109), (115)) for the generalized recovery

approach.

Continuous Setting

The recovery process in the continuous setting amounts to determining the unique bound

state associated with the eigenproblem (8). Since an analytical solution to (8) does not exist

in general, the recovery process involves discretizing the continuous state space to construct

a numerical solution. Discretizing the state space not only yields a more explicit mapping

between the AD price matrix A and the infinitesimal operator DQ (6), but also sheds light

on the recovery consistency at the infinitesimal limit of the state space specification in the

discrete setting.
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To discretize the state space, we consider a finite difference representation of the infinites-

imal operator,

DQx(y) = −r(y)x(y) + µQ
y y

x(y + dy)− x(y − dy)

2dy
+

1

2
σ2
yy

2x(y + dy)− 2x(y) + x(y − dy)

(dy)2
.

(11)

This representation, together with the correspondence Adt ←→
(
1+ dtDQ

)
(7), gives rise

to a limiting (finite-difference) expression for the AD matrix associated with horizon dt,

Adt =



X Y 0 0 . . . 0 0 0

Z X Y 0 . . . 0 0 0

0 Z X Y . . . 0 0 0

...
. . .

...

...
. . .

...

0 0 0 . . . Z X Y 0

0 0 0 . . . 0 Z X Y

0 0 0 . . . 0 0 Z X



, where



X ≡ 1− r(y)dt− σ2
yy

2 dt
(dy)2

Y ≡ 1
2
σ2
yy

2 dt
(dy)2

+ 1
2
µQ
y y

dt
dy

Z ≡ 1
2
σ2
yy

2 dt
(dy)2
− 1

2
µQ
y y

dt
dy
.

(12)

Note that X, Y , and Z are functions of y, i.e., their values vary with position y in the

state space grid (or column and row indices in AD matrix Adt). The adopting of different

discretization schemes by different analysts in the continuous setting mirrors the adopting

of different subjective state space specifications in the discrete setting. Hence the recovery

consistency requirement in the continuous setting limit can be be seen in the consolidation of

AD matrices (12) associated with different discretization schemes. Inconsistent recovery pro-

cesses and results may also reveal in spurious arbitrage opportunities (i.e., negative prices).

As a result, the consistency conditions in the continuous setting can also be formulated as

a positivity requirement (to rule out arbitrages) on the limiting expression (12) of AD ma-

trix. The next section presents this formulation, after identifying a necessary and sufficient
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condition for the consistency in recovery processes.

2.3 Consistent Recovery

This section formalizes the consistency requirement in recovery results associated with differ-

ent state space specifications. The necessary and sufficient condition for a consistent recovery

is restrictive, indicating an elusive nature of consistent recovery processes in general.

Discrete setting

Our thought analysis addresses the recovery results obtained by two analysts using different

subjective state space specifications, namely the original S ≡ {1, . . . , S} and the consolidated

S ≡ {1, . . . , S}. For clarity, we assume that S is netted in S. That is, given any state {j} ∈ S

in the consolidated specification, an original state {k} either is an inclusive component of {j}

(i.e., {k} ⊂ {j}) or does not at all overlap with {j} (i.e., {k} ∩ {j} = ∅). This state space’s

nesting partition formalizes the single and coupled natures of states (introduced earlier), and

can be characterized by a binary indicator Ck j,

Ck j = 1 if {k} ⊂ {j}, Ck j = 0 if {k} ∩ {j} = ∅, ∀{k} ∈ S, {j} ∈ S. (13)

It is important to observe that these nesting partitions aim to illustrate an important fea-

ture that the consolidated specification S is associated with unambiguously less (coarser)

information structure about the state space than the original specification S. The indicators

(13) together form an S×S indicator matrix C and fully characterize the mapping between

the two specifications. To illustrate, for the specific Example 1, the 3 × 2 indicator matrix
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C mapping the original and consolidated state space specification reads

{1} = {1}

{2} = {2, 3}

 =⇒ C =


1 0

0 1

0 1

 . (14)

The basic recovery process proceeds in two steps, i.e., constructing the implied one-period

AD matrix from the observed price data (4) and then solving for its dominant eigenvalue and

eigenvector (2) to recover the time and risk preferences. In the first step, the one-period AD

price matrices (A and A respectively for original S and consolidated S specifications) are

implied from the rolling of AD assets over one more period recursively. These two recursive

equation systems are versions of the same system (4), but adopted for specifications S and

S,

Original system: Aτ+1︸ ︷︷ ︸
S×S

= Aτ︸︷︷︸
S×S

A︸︷︷︸
S×S

; Consolidated system: Aτ+1︸ ︷︷ ︸
S×S

= Aτ︸︷︷︸
S×S

A︸︷︷︸
S×S

, (15)

where Aτ and Aτ+1 contain the observed price data for S + 1 maturities τ ∈ {1, . . . , S +

1} in the original specification (4). Similarly, Aτ and Aτ+1 contain the observed price

data of the consolidated AD assets for S + 1 maturities τ ∈ {1, . . . , S + 1}. Since the

consolidated specification is associated with a coarser partition and information structure

of the state space (as observed below (13)), it requires less data for the recovery than the

original specification.

In the second step, recall from (2) that the dominant eigenvectors of A and A (15) are

identified with the (inverse of) marginal utilities in original and consolidated specifications re-

spectively. Therefore, relating these eigenvectors helps to relate the recovery results in differ-

ent state space specifications. Consider a state {j} ∈ S in the consolidated specification that

nets several original states {j} ∈ S. Given the same initial current state i, the current AD

asset prices observed by the two analysts satisfy no-arbitrage relations Aτ ;i j =
∑

{j}⊂{j}Aτ ;ij,
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∀τ ∈ {1, . . . , T}. Using matrix notation, assembling these no-arbitrage relations for all states

{j} in the consolidated specification yields,8

Aτ︸︷︷︸
S×S

=
î
IS×S OS×(S−S)

ó︸ ︷︷ ︸
S×S

Aτ︸︷︷︸
S×S

C︸︷︷︸
S×S

; Aτ+1︸ ︷︷ ︸
S×S

=
î
IS×S OS×(S−S)

ó︸ ︷︷ ︸
S×S

Aτ+1︸ ︷︷ ︸
S×S

C︸︷︷︸
S×S

, (16)

where I denotes an identity matrix and O a matrix of zeros. Matrix equations (16) simply

perform the summing of columns j’s of the underlying τ -period AD price matrix Aτ into a

column {j} of the consolidated τ -period AD price matrix Aτ , where {j}’s are the underlying

component states of the coupled state {j}, or {j} ⊂ {j}. Equation (24) below illustrates this

summing operation for Example 1. The no-arbitrage matrix relation (16) then transforms

the recovery system (15) into,9

Aτ+1 =
î
IS×S OS×(S−S)

ó
AτAC. (17)

Let us define a S×S matrix B that satisfies AC = CB. As a result, Equation (17) simplifies

further as

Aτ+1 =
î
IS×S OS×(S−S)

ó
AτCB = AτB, (18)

where the second equality arises from (16). Comparing (18) with the consolidated system in

(15) implies,10

A︸︷︷︸
S×S

C︸︷︷︸
S×S

= C︸︷︷︸
S×S

A︸︷︷︸
S×S

. (19)

Recall that while one-period AD price matrices A and A (15) are implied from price data,

8That is, in matrix notation (16), these no-arbitrage relations amount to summing columns j’s of the
underlying τ -period AD price matrix Aτ into a corresponding column {j} of the consolidated τ -period AD
price matrix Aτ , where {j}’s are the underlying component states of the coupled state {j}, or {j} ⊂ {j}.

9First, multiplying the matrix
î
IS×S OS×(S−S)

ó
to the left, and the indicator matrix C to the right, of

the original system in (15) produces
î
IS×S OS×(S−S)

ó
Aτ+1C =

î
IS×S OS×(S−S)

ó
AτAC. The second

equation in (16) then implies (17).
10Equations (15) and (18) show that the matrix B introduced above coincides with the AD price matrix A

in the consolidated specification. A therefore also satisfies B’s defining identity listed below (17), AC = CB,
which becomes (19).
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indicator matrix C (13) arises exclusively from analysts’ subjective specifications. Given a

set of price data driven by an underlying (objective) market model, not every (subjective)

indicator matrix C satisfies (19). Equivalently, not every two subjective specifications of

the state space are simultaneously consistent with the observed price data. Equation (19)

presents an important condition for two state space specifications to be consistent in the

recovery process.

To illustrate, for the specific Example 1, the substitution of indicator matrix C (14) into

Equation (19) generates the following no-arbitrage conditions


A11 = A1 1; A12 + A13 = A1 2

A21 = A2 1; A22 + A23 = A2 2

A31 = A2 1; A32 + A33 = A2 2.

(20)

The first two conditions are an innocuous implication of the consolidation scheme {1} = {1}

and {2} = {2, 3} (Figure 1). The remaining four conditions are stringent and require that

A21 = A31 (as both are identified with A2 1), and A22+A23 = A32+A33 (as both are identified

with A2 2). Note that these conditions are exogenous to the price data because they arise

from analysts’ subjective specifications. These conditions place strong constraints on the

results recovered by adopting these subjective specifications in the recovery process. The

recovery consistency issue arises because these strong conditions can only be satisfied in a re-

strictive set of special underlying market models, being manifest in that the recovery results

in different subjective specifications are incompatible, Specifically, using the pricing equa-

tion (3) for AD assets, conditions (20) only hold when the marginal utilities and transition

probabilities concerning the original states {2} and {3} (belonging to the same consolidated

state {2}) are indistinguishable in the underlying market model (quantified in Equation (22)

below). When original states {2} and {3} are distinguishable in the underlying model (e.g.,

M2 ̸= M3), the recovery results in original and consolidated specifications (Figure 1) are

inconsistent with each other because conditions in (20) are violated.
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The following necessary and sufficient condition for the recovery consistency formalizes

our discussion about comparing and reconciling recovery results associated with different

state space specifications.

Proposition 1 Let S ⊃ S denote two (subjective and netting) state space specifications of

the same underlying (but unobserved) market model. The Ross’s recovery results obtained

in the two specifications are mutually consistent if and only if all single states {j} ∈ S that

correspond to a coupled state {j} ∈ S are associated with identical characteristics (marginal

utilities and transition probabilities) from the coarser specification S’s perspective,

Mi = Mk, pih = pkh; ∀{i}, {k} ⊂ {j}; {j}, {h} ∈ S. (21)

Appendix A presents a proof of this proposition. To illustrate, for the specific Example 1,

the necessary and sufficient condition (21) for the recovery consistency under S = {1, 2, 3}

and S = {1, 2} (with {1} = {1}, {2} = {2, 3}) contains three specific conditions

M2 = M3, p21 = p31, p22 + p23︸ ︷︷ ︸
p2 2

= p32 + p33︸ ︷︷ ︸
p3 2

. (22)

Qualitatively, Proposition 1 highlights an endogeneity issue inherent to the recovery frame-

work. The state space specification is not observed prior to the recovery process yet is

consequential to the recovery results. Different presumed specifications lead to possibly

irreconcilable recovery results. Quantitatively, Proposition 1’s necessary and sufficient con-

dition is highly restrictive, asserting that all original states constituting a consolidated state

be indistinguishable for consistent recovery results in the original and consolidated specifi-

cations. This condition can only be satisfied in a set of special underlying market models

and special (compatible) subjective specifications, highlighting an elusive nature of a con-

sistent recovery. The recovery results obtained by different analysts would be inconsistent

with each other because, most likely, Proposition 1’s necessary and sufficient condition is not
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satisfied by their subjective specifications and the underlying market model. Finally, note

that when the Recovery Theorem’s assumptions hold, an analyst’s recovery results being

inconsistent with the underlying (true) market’s characteristics must be because the ana-

lyst’s subjective specification violates condition (21) in its relationship with the underlying

(true) specification. Being inconsistent with the true specification, the subjective one is a

misspecification associated with the analyst’s spurious recovery results. While in principle

it could be possible to detect a misspecification, it is impractical or impossible to identify a

consistent specification by ruling out virtually infinitely many misspecifications.11

Continuous Setting

We recall that the recovery process in the continuous setting involves the differential equation

DQ
dtx(y) = log (δ) x(y) (8), whose numerical solution amounts to determining the eigenprob-

lem of the associated AD price matrix Adt (12). In this numerical approach, the recovery

consistency issue in the continuous setting then concerns a consistent construction of the

AD price matrix Adt in different discretization (finite-difference) schemes of the underlying

state space. As discussed below (12), a formulation of the consistency condition imposes

an positivity requirement on Adt to rule out arbitrage opportunities (because their presence

indicates a spurious and inconsistent recovery process).

To illustrate this consistency requirement, assume for simplicity that the state variable

yt (5) has constant risk-neutral moments {µQ
y , σy}. This assumption implies that entries

X, Y , Z of the AD price matrix Adt (12) are state-invariant. In this simple premise, the

positivity requirement on these entries of Adt translates into the following conditions on the

11Given two sets of subjective recovery results, one can check their consistency conditions. If some of
these conditions are violated, then at least one of the subjective specifications is spurious. But as the true
specification is unobserved, one might not know for sure which of the two subjective specifications is spurious
without further testing.
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finite-difference steps dt and dy
y
of time and state space,

∣∣∣∣∣ σ2
y

µQ
y

∣∣∣∣∣ > dy

y
> σy

 
dt

1− r(y)dt
. (23)

Consistency conditions (23) are important to illustrate the origin of the recovery consistency

issue (Section 3 below). We note that when {µQ
y , σy} are state-dependent (i.e., varying with

y), the above conditions also become state-dependent. That is, the discretization
¶

dy
y
, dt
©

of the state space and time in the recovery implementation needs to vary harmoniously

with the state dynamics {µQ
y , σy} to preserve the consistency conditions (23) for the entire

domain of the state variable y. That is, analysts unaware or ignorant of the state dynamics

may unknowingly and subjectively adopt a discretization scheme that delivers inconsistent

recovery results. Building on these observations in discrete and continuous settings, the next

section elaborates on the origin of the consistency issue in recovery.

3 Origin of the Recovery Inconsistency

Being equipped with Proposition 1’s necessary and sufficient characterization of a consistent

recovery process, this section elucidates the origin the recovery consistency issue. We demon-

strate a tradeoff between the sophistication of the state space specification (accommodating

realistic recovery settings) and its effect on a non-linear error buildup in the recover results

(deepening the recovery consistency issue). This tradeoff shows that the limit of the state

space partition grid does not solve the recovery consistency issue. We first briefly present

some basic intuitions underlying this tradeoff in both discrete and continuous settings (Sec-

tion 3.1), before detailing the analysis setup (Section 3.2), results (Section 3.3) and further

discussion (Section 3.4). Supporting technical derivations are relegated to Appendix B.1.
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3.1 Basic Intuitions

A preliminary discussion informs our basic intuitions about the nature of the recovery con-

sistency and a detailed quantitative analysis in subsequent sections.

In the discrete setting, the key quantity to the concept and implementation of Ross’s

recovery is the one-period AD asset price matrix (2), whose dimension and determination

are dictated by the state space specification. When employing a subjective (but generic)

specification S of S states, an analyst obtains the corresponding S ×S one-period AD asset

price matrix A. Two intuitions are in order. First, a tradeoff concerning the state space

specification exists and compromises the quality of recovery results. Given a specification

S of S states (e.g., chosen subjectively by a recovery-implementing analyst), the S × S

AD matrix A is solved from the recursive system of S equations involving S + 1 different

maturities of asset price data (i.e., the second system in (15), which originates from (4)).

While an increase in the number S of states in the subjective specification improves the

flexibility to approximate the underlying (to be recovered) state space more closely, it also

involves a larger recovery equation system. Since the equations therein are recursive, even

a small mismatch (i.e., misspecification or error) between the subjective and the underlying

state space specifications12 reverberates and amplifies non-linearly in the recovery equation

system (i.e., the second system in (15)). In particular, S also represents the non-linearity

degree of the misspecification amplification and the resulting recovery error buildup (i.e.

inconsistency). Note that this tradeoff among the effects of the value S on the recovery results

arise even when price data for S+1 maturities is available and observed without measurement

errors. The tradeoff clearly indicates that a more sophistication in the subjective state space

specification (a larger S, and error-free associated price data) do not solve the recovery

consistency issue.13

12This small mismatch results from a better approximation associated with a larger number S of states in
the subjective specification.

13This tradeoff is an alternative and intuitive way to paraphrase the Proposition 1’s result that the recovery
process is consistent if and only if restrictive conditions specified in that proposition hold.
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Second, an inadvertent (and irreversible) loss of information concerning the recovery

implementation exists and skews the recovery results obtained by the analyst. Given that

the analyst’s subjective specification S may differ from the underlying (and unobserved)

specification S, a consolidation of the underlying τ -period AD asset prices into those in the

subjective specification is needed, Aτ ;i j =
∑

{j}⊂{j}Aτ ;ij, ∀τ ∈ {1, . . . , T}, {i} ∈ S, {j} ∈ S

(as discussed above Equation (16)). Evidently, many different possible sets of τ -period AD

prices {Aτ ;ij} can generate the same configuration of consolidated τ -period AD prices {Aτ ;ij}

perceived by the analyst, i.e., a many-to-one ambiguity between the underlying recoveries

and the subjective recovery. In other words, a same set of recovery results obtained by the

analyst (using price data {Aτ ;ij}) may correspond to different underlying market models

(each associated with a possible set of price data {Aτ ;ij}). When these different market

models conflict with each other, the many-to-one ambiguity indicates that the recovery

results obtained in the subjective specification, albeit unique, do not necessarily distinguish

and implicate the true underlying market model, indicating a recovery consistency issue.14

Intuitively, this ambiguity arises from the fact that the subjective specification S features

a coarser partition and information structure of the state space than the underlying S as

observed below (13). The construction of τ -period AD prices {Aτ ;ij} by the analyst for the

recovery then inadvertently (and irreversibly) induces a loss of information.

To illustrate, for the specific Example 1, assume the current underlying state is {1}. We

consider two (hypothetical) underlying τ -period AD price matrices AI
τ and AII

τ listed in (24)

that are associated with two different underlying market models. The consolidation (16),

which amounts to summing certain columns of the underlying τ -period AD price matrices

(per Footnote 8 and using indicator matrix C (13)), yields identical consolidated τ -period

14Even when more price data are available (than required by a just-identified recovery system (4)) and
employed in the best-fit recovery approach, the loss of information and recovery consistency issue remain
(Appendix C.2).
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AD price matrices A
I

τ = A
II

τ ,

AI
τ =


1 a b

2 c d

3 e f

 , AII
τ =


1 a+b

2
a+b
2

2 c+d
2

c+d
2

3 e+f
2

e+f
2

 =⇒ A
I

τ = A
II

τ =

 1 a+ b

2 c+ d

 . (24)

That is, information about the specific underlying market model (I or II) and its character-

istics (time and risk preferences and transition probabilities) is lost at the analyst’s recovery

level, which is built on the asset prices in indistinguishable matrices A
I

τ = A
II

τ .

In the continuous setting, the AD matrix is replaced by the risk-neutral infinitesimal

operator DQ (11), whose finite-difference representation (12) discretizes the recovery differ-

ential equation DQx(y) = −ρx(y) (8) for a numerical recovery solution. In this infinitesimal

limit of the state space grid partition, the violation of the consistency conditions (23) implies

arbitrage opportunities (i.e., negative AD asset prices), and hence, an inconsistent recovery

process. Because these conditions are governed by the underlying state variable’s dynamics

{µQ
y , σy} they are violated when the analyst adopts a discretization scheme incompatible to

the underlying dynamics. Specifically, given a state (relative) volatility
∣∣∣ σy

µQ
y

∣∣∣, a sufficiently

fine state space grid (sufficiently small dy) and sufficiently frequent sampling of asset ma-

turities (sufficiently small dt) are needed. Otherwise, it is possible that
∣∣∣ σy

µQ
y

∣∣∣ < 1
σy

dy
y

or∣∣∣ σy

µQ
y

∣∣∣ < » dt
1−r(y)dt

, which violate conditions (23) and yield inconsistent recovery results for

the analyst. A harmonious time and state space discretization scheme
¶
dt, dy

y

©
required in

the recovery process reflects an intuitive notion that one needs a sufficiently fine sampling of

data to probe a sufficiently fast-moving (volatile) underlying state dynamics. It is important

to observe that the limit of high state space partition resolution, dy → 0, does not assure the

recovery consistency if the maturity sampling is not commensurately frequent (i.e., when dt

does not commensurately shrink, dy
y
< σy

»
dt

1−r(y)dt
, violating (23)). As this standard limit

corresponds to a discrete setting with infinitely many states, the observation shows that the

sophistication of the state space specification alone does not solve the recovery consistency
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issue. Sections 3.2-3.4 substantiate this observation with a quantitative setup and in-depth

analysis.

In retrospective, Proposition 1’s restrictive condition is needed to assure that underlying

component states (belonging to a state in the consolidated specification) are indistinguish-

able. Such a restrictive structure prevents a loss of information on the underlying unobserved

state space S when the analyst employs a subjective specification S ̸= S, hence preserving

the recovery consistency.

3.2 Perturbative Setup

To examine how recovery results vary with the sophistication of the state space specification,

we adopt a thought-experiment setup with two subjective specifications with distinct sophis-

tication level for the same underlying state space. By varying the difference between the two

specifications, our setup’s configuration explicitly demonstrates the origin and persistence of

the recovery consistency issue as the two specifications converge.

Assume that the underlying state space S = {1, 2, 3, 4} is composed of S = 4 original

states. Whereas, the first analyst’s subjective state space specification (indexed by super-

script a) has S
a
= 2 states, the second analyst’s specification (indexed by b) has S

b
= 3

states. Let the analysts’ consolidation schemes be as follows (also depicted in Figure 2)


(Simple) Specification a:

Sa
= {1a, 2a}, with:

{1a} ≡ {1}, {2a} ≡ {2, 3, 4},


(Sophisticated) Specification b:

Sb
= {1b, 2b, 3b}, with:

{1b} ≡ {1}, {2b} ≡ {2}, {3b} ≡ {3, 4}.

(25)

Let the current state be the single state {1} = {1a} = {1b}. Our thought-experiment analysis

starts with a marginal utility configuration for the underlying state space characterized by
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Figure 2: Underlying (true, but unobserved) and subjective state space specifications for different
analysts a and b associated with the consolidation scheme (25). The subjective specification of
analyst a is more sophisticated than that of analyst b.

a small real parameter ε as follows,

M1 = 1, M2 = M, M3 = M + 2ε, M1 = M + 3ε, with |ε| ≪ 1. (26)

Several rationales motivate this configuration. First, since marginal utilities are determined

up to a multiplicative constant, without loss of generality we normalize the marginal util-

ity in the first state to one. Second, when ε = 0, marginal utilities are identical in the

three original states {2,3,4} (26), satisfying the requirement on marginal utilities for the

recovery consistency (Proposition 1). The thought experiment depicted in Figure 2 also

employs underlying transition probability inputs that satisfy Proposition 1’s requirement on

the transition probabilities. As a result, the recovery results associated with a’s, b’s, and

the underlying specifications are mutually consistent when ε = 0. Accordingly, we refer

to the marginal utility configuration (26) associated with the specific value ε = 0 as the

consistent configuration, and ε as the deviation parameter from the consistent configura-

tion.15 Third, analyst b’s specification (S
b
= 3) is closer to the underlying specification

15 Given a value ε ̸= 0, the configuration (26) presents the “true” (underlying but unobserved) marginal
utilities to be recovered. For an analytical exposition, we consider a sufficiently small value ε so that
the “true” underlying configuration is close to the consistent configuration (associated with ε = 0 in (26)
and satisfying Proposition 1’s conditions). That is, the special value ε = 0 does not represent the “true”
configuration in the thought experiment. Instead, ε = 0 represents the unperturbed configuration, i.e., the
leading component of the setting in which ε is non-zero and small.
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(S = 4) than a’s (S
a
= 2). Furthermore, as the spread between the underlying marginal

utilities ({M2−M1,M3−M2,M4−M3}) is not equally distributed, analyst b’s coupled state

{3b} ≡ {3, 4} is more homogeneous than a’s coupled state {2a} ≡ {2, 3, 4}. These features

aim to assure that b’s subjective specification is more sophisticated than a’s16 and set the

stage for our comparative analysis in the thought experiment.

Two comparative statics of interest

A priori there are two comparative statics concerning the recovery consistency issue.

C1. ε → 0 while fixing the state space specifications: This comparative statics pertains

to variations associated with a vanishing deviation from the consistent configuration.

Because the underlying configuration (26) coincides with the consistent configuration at

ε = 0, this comparative statics helps to reveal how analysts’ recovery results approach

the underlying market’s risk and time preferences as ε→ 0.

C2. Sa → Sb
while fixing ε ̸= 0: This comparative statics pertains to variations from a

subjective specification Sa
to another more sophisticated Sb

. It helps to reveal whether

getting closer to the underlying specification improves the recovery results when the

underlying specification S does not belong to the restrictive premise of Proposition 1

(i.e., ε ̸= 0).

The first comparative statics C1 leads to standard convergence results. Because ε = 0

corresponds precisely to the consistent configuration of Proposition 1, standard regularity

conditions imply that in the limit of vanishing deviation, ε→ 0, the recovery results obtained

by both analysts converge to the underlying, i.e., the recovery consistency issue disappears

in this limit (see explicit solutions (30) below).

In contrast, the second comparative statics C2 leads to surprising results. It shows that

16These assumptions are innocuous. Our perturbative analysis below enables closed-form solutions to any
state space configurations as long as ε is sufficiently small.

29



agent a’s primitive specification is capable of delivering superior recovery results (compared

to agent b’s sophisticated specification). Intuitively, non-linear effect of the specification

on the recovery process generates a subtle pattern that the recovery consistency does not

necessarily improve with the sophistication of the subjective specification. The analysis

below derives this comparative statics and elucidates how the non-linearity stemming from

the sophistication of the state space specification ends up impairing the consistency of the

recovery results in that specification (Equation (35) and the related discussion below).

3.3 Perturbative Results

We briefly list the main steps and quantitative results of the perturbative approach, before

presenting a detailed analysis. Technical derivations are in Appendix B.1. Assuming stan-

dard regularity conditions, a generic recovery quantity Qi(ε) in the specification i ∈ {a, b}

has the following perturbative expansion in the leading order

Qi(ε) = Q︸︷︷︸
unperturbed component

+ ε P i︸︷︷︸
perturbative component

, i ∈ {a, b}, (27)

where the unperturbed quantity Q is associated with ε = 0 (or the consistent configuration).

Per the discussion earlier (Footnote 15), the unperturbed Q is not the “true” underlying

quantity, but the zero-order term in the perturbative expansion.17 In the leading order,

Qi(ε) deviates from the unperturbed Q by an amount commensurate (linear) with ε, where

Qi(ε), Q, and P i in (27) are quantities (scalars, vectors, or matrices) of same dimensions

and order of magnitudes.

Adopting the recovery process in the thought-experiment setting (Sections 2.2 and 2.3)

and the perturbative expansion (27) for a small ε, the recursive recovery system (15) that

solves the consolidated AD price matrix A
i
in specification i ∈ {a, b}, has the following

17In fact, only when ε = 0 represents the “true” underlying configuration, then Q is the “true” underlying
quantity.
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form,18

A
i

τ+1(ε)︸ ︷︷ ︸
S
i×S

i

= A
i

τ (ε)︸ ︷︷ ︸
S
i×S

i

A
i
(ε)︸ ︷︷ ︸

S
i×S

i

, with


A

i

τ (ε) = A
i

τ + εB
i

τ ,

A
i

τ+1(ε) = A
i

τ+1 + εB
i

τ+1,

A
i
(ε) = A

i
+ εB

i
,

i ∈ {a, b}, (28)

where matrix A
i

τ (ε) contains the AD asset prices initiated on the current state and maturing

in τ ∈ {1, . . . , Si
+1} periods associated with specification S i

. These current AD asset prices

are observable, arising explicitly from consolidating the underlying S into S i
. By the same

reason, matrices A
i

τ+1(ε), A
i

τ , B
i

τ , A
i

τ+1, B
i

τ+1, which concern only the AD assets initiated

on the current state, are also observable. In contrast, one-period AD price matrix A
i
(ε)

(and its components A
i
, B

i
(28)), which concern the AD assets initiated on all possible

states in S i, are implied as follows. Substituting the expansions of A
i

τ (ε) and A
i
(ε) into

the recursive recovery system (all in (28)) and matching terms of the same order in ε imply

the perturbative component B
i
, and hence, the entire AD price matrix A

i
(ε) in the leading

order,

B
i
=
Ä
A

i

τ

ä−1 Ä
B

i

τ+1 −B
i

τA
i
ä
, A

i
(ε) = A

i
+ εB

i
= A

i
+ ε
Ä
A

i

τ

ä−1 Ä
B

i

τ+1 −B
i

τA
i
ä
.

(29)

These matrix equations help to demonstrate how the subjective specification S i affects the

implied AD price matrix A
i
(ε), from which analyst i’s recovery results arise. We note that

matrices in (29) are related to the Vandermonde matrix, and therefore, have explicit solu-

tions.19 Specifically, we start with the perturbative expansions of the dominant eigenvalue

18Specifically, the recovery process in the thought experiment for a subjective specification Si consists of
three steps to determine (i) the (observable) matrix A

i

τ of current AD prices maturing in different periods
τ ∈ {1, . . . , Si + 1} (by consolidating the current AD prices in the underlying specification (16)-(17)), (ii)

the (implied) AD price matrix A
i
(by solving the recursive recovery equation system in the subjective

specification A
i

τ+1 = A
i

τA
i
(15)), and (iii) the (implied) time discount factors and marginal utilities (by

solving for the dominant eigenvalue and eigenvector of the AD price matrix A
i
xi = δ

i
xi in the subjective

specification (2)).
19We discuss the relation and relevance of the Vandermonde matrix in the recovery setting in Appendix
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δ
i

1(ε) and the associated (right) eigenvector xi
1(ε) of AD price matrix Ai(ε),

A
i
(ε)xi

1(ε) = δ
i

1(ε)x
i
1(ε), with

 δ
i

1(ε) = δ1 + ε∆δi,

xi
1(ε) = xi

1 + ε∆xi,
i ∈ {a, b}. (30)

Note that the unperturbed dominant eigenvalue is the same for both analysts, δa1 = δb1 = δ1,

because ε = 0 corresponds to the consistent configuration, in which their recovered time

discount factors are identical (Proposition 1 and Footnote 15). Substituting the perturbative

expansions into the eigenequation (the first equation in (30)) and matching terms of the same

order in ε yield the perturbative components, and hence, entire leading-order expressions of

dominant eigenvalue δ
i

1(ε) and eigenvector xi
1(ε) under analyst i

δ
i

1(ε) = δ1 + ε∆δi = δ1 + ε
(wi

1)
′
B

i
xi
1

(wi
1)

′
xi
1

,

xi
1(ε) = xi

1 + ε∆xi = xi
1 + ε

∑S
i

k=2

(wi
k)

′
B

i
xi
1

(δ1−δik)(wi
k)

′
xi
k

xi
k,

(31)

where xi
k and wi

k denote respectively the k-th right and left eigenvectors of the S
i × S

i

unperturbed AD price matrix A
i
. Solution (31) shows that, already in the leading (linear)

order of ε, all unperturbed eigenvectors are tangled with each other in their contributions to

the dominant eigenvector xi
1(ε) and the associated recovered marginal utilities. Intuitively,

an eigenvector xi
k closer to the dominant one xi

1 (i.e., a smaller (δ1 − δik)) is tangled more

with xi
1 (i.e., a larger 1

δ1−δik
) and hence has a stronger impact on the recovered (perturbed)

eigenvector xi
1(ε). Relating matrix equations (29) to Vandermonde matrix enables an an-

alytical expression for B
i
, and hence, for the recovery results for both analysts i ∈ {a, b}

(Equations (78)-(77), Appendix B.1). In particular, the time discount factors recovered by

B.1, see Equation (81).
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the two analysts are

δa1(ε) = δ1 + ε× δ1x
a
12

xa
11

× δ1(P3 − P2)− δa2(P2 − P1)

δ1 − δa2
, (32)

δb1(ε) = δ1 + ε× δ1x
b
13

xb
11

× δb2δ
b
3(P2 − P1)− δ1(δ

b
2 + δb3)(P3 − P2) + δ21(P4 − P3)

(δ1 − δb2)(δ1 − δb3)
, (33)

where xi
1k is the k-th element of the dominant right eigenvector xi

1 of the one-period AD price

matrixA
i
, which is also the (unperturbed) inverse marginal utility in state {k} (see Equation

(34) below). Pτ concerns the transition probabilities (in the underlying specification S)

from current state {1} to states {3, 4} in τ periods; Pτ ≡ 2pt,t+τ (1, 3) + 3pt,t+τ (1, 4), where

τ ∈ {2, 3, 4}. The perturbative recovery results are derived in Appendix B.1 (Equations (79),

(80)) Similar analytical perturbative expressions are obtained for the dominant eigenvectors

(or, recovered marginal utilities) xi(ε), i ∈ {a, b} by substituting the explicit expression for(
wi

k

)′
B

i
xi
1 (79) into Equation (31).

3.4 Perturbative Analysis

The expressions derived above set the stage for an analysis on the relationship between

the subjective (input) specification and the associated recovery results, addressing the two

comparative statics C1 (on ε→ 0) and C2 (on Sa
vs. Sb

) listed in Section 3.2. Concerning the

first comparative statics C1, the limit of a vanish deviation from the consistent configuration

is straightforward. As ε→ 0, both analysts’ time discount factors δ
a
(ε) (32) and δ

b
(ε) (33)

converge to the underlying δ1. In the same limit, their recovered dominant eigenvectors (31)

converge respectively to xa
1 and xb

1. As ε = 0, (26) shows that these eigenvectors belong to

the consistent setting of Proposition 1,

xa
1 =

Å
1

M1

,
1

M2

ã′
, xb

1 =

Å
1

M1

,
1

M2

,
1

M2

ã′
, (34)
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where Mi’s denote the underlying marginal utilities (26). Therefore, in the limit ε → 0 of

the comparative statics C1, both analysts’ recovered risk preferences also converge to the

underlying.

Concerning the second comparative statics C2, the differential effect of subjective speci-

fications Sa
and Sb

on the recovery results is subtle. While Sb
is closer (more sophisticated)

to the underlying S than Sa
, the sophistication does not translate into a superior (closer to

the underlying) recovery results for analyst b. This tradeoff arises because agent b’s more

sophisticated subjective specification accommodates a higher number of states (S
b
> S

a
),

requires more maturities of the price data input, and relies on a recovery equation sys-

tem of higher dimension and degree. Misspecification and approximation error between the

subjective and underlying specifications build up in the recovery process, facilitating the

recovery consistency issue. The perturbative formalism demonstrates this adverse effect and

the tradeoff.

First, the consistency issue originates in the recursive recovery system (29) that solves the

implied AD matrix Ai(ε). As the subjective specification and consolidation are instrumental

to the recovery consistency issue underlying Proposition 1, their presence in the construction

of AD asset prices in A
i

τ and B
i

τ (29) signifies that they remain instrumental for the recovery

consistency in the perturbative setting. Intuitively, any errors in observing these AD asset

prices (due to specification, approximation, and consolidation) have a non-linear effect on

the implied AD matrix Ai(ε) (due to the matrix inversion
Ä
A

i

τ

ä−1
in (29)). The more

sophisticated the subjective specification S i
is, the more asset price maturities S

i
+ 1 are

needed, the higher dimension S
i×Si

the to-be-inverted matrix A
i

τ has, and the more tangled

and non-linear the effect of the subjective misspecification S i
on the implied AD matrix

Ai(ε) is. Hence, matrix solutions (29) hint at an adverse impact of the sophistication of

specification on the implied AD matrix.

Second, the consistency issue is passed on to and reflected in the recovery results obtained

in the eigenproblem of the implied AD matrix. The dominant eigenvalues δ
a

1(ε) (32) and
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δ
b

1(ε) (33), or the time discount factors recovered by the two analysts a and b, exhibit the

specification’s non-linear effect on the recovery. These expressions clearly show that the

time discount factor recovered by the sophisticated analyst b is more non-linear than that by

the primitive analyst a. This non-linearity stems from the inversion of a higher-dimensional

S
b × S

b
matrix A

b

τ mentioned above. Since the unperturbed dominant eigenvectors are

consistent for the two analysts (34), we have xa
11 = xb

11 = 1
M1

, and xa
12 = xb

13 = 1
M2

, and

the difference between the two recovered time discount factors (32), (33) boils down to the

following perturbative factors

δ1(P3 − P2)− δa2(P2 − P1)

δ1 − δa2
vs.

δb2δ
b
3(P2 − P1)− δ1(δ

b
2 + δb3)(P3 − P2) + δ21(P4 − P3)

(δ1 − δb2)(δ1 − δb3)
.

(35)

Observe that Sa
and Sb

originate from the same underlying specification S, and Proposition

1’s consistency conditions bind their (unperturbed) dominant eigenmodes (δa1 = δb1 = δ1,

xa
11 = xb

11, and xa
12 = xb

13 (34)). The higher-order eigenmodes associated with Sa
and Sb

,

however, are largely exogenous to each other.20 As a result, when AD price matrix A
b
has

a more clustered spectrum than A
a
, analyst b’s perturbative factor can be larger than that

of analyst a by an order of magnitude (35). As a result, recovery results in specification Sb

can deviate from the underlying substantially more than those in specification Sa
. The more

sophisticated a subjective specification is, the more non-linear are its perturbative factors

(35), opening the possibility for larger recovery inconsistencies. In this regard, note that the

derivation underlying the perturbative analysis holds for general state space specifications

with any finite number of states (via to a connection to the Vandermonde matrix, Appendix

B.1).

Alternatively, the recovery consistency issue can also be seen in the continuous setting, in

20To see this in the thought-experiment setting, note that given an entire characteristic set of marginal

utilities, time discount factor, and transition probabilities in a subjective specification Si, we cannot deduce
the corresponding characteristic set for the underlying S, and therefore, the characteristic set for another

subjective specification Sk. This is because the information about characteristics in the underlying S is
(partially but irreversibly) lost in the subjective specification (see (24) and the associated discussion).
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which the AD price matrix Adt (12) for an infinitesimal time horizon dt is constructed by dis-

cretizing the underlying continuous state dynamics. The discretization scheme is subjective,

i.e., two different analysts may choose different sets
¶
dt, dy

y

©
of time and state space steps for

the discretization, resulting in different subjective elements {X, Y, Z} for the matrix Adt. A

subjective and inharmonious choice of
¶
dt, dy

y

©
can make one or more elements in {X, Y, Z}

(12) negative, implying arbitrage opportunities and recovery inconsistencies. In particular,

a more sophisticated state space discretization scheme (i.e., small dy
y
) requires a fine time

discretization (i.e., commensurately small dt) to assure that X > 0.21 Intuitively, probing

the state space with a high resolution (i.e., small dy
y
) requires sufficiently high-frequency

data (sufficiently small dt). Moreover, a harmonious choice of
¶
dt, dy

y

©
that respects the

positivity of {X, Y, Z} also depends on the underlying state dynamics (Footnote 21). That

is, more sophisticated subjective state space specifications do not necessarily improve the

recovery results and their consistencies, specially when these specifications are selected with-

out the knowledge of the underlying state space structure. This observation is in line with

the findings above on the relationship between subjective specifications and recovery results

in discrete setting.

4 Recovery Inconsistency Direction

Building upon the analysis above on the origin of the recovery consistency issue, this section

examines the direction of consistencies, i.e., under what economic premises the recovery

results associated with a subjective state space specification are above (overshooting) or

below (undershooting) the market’s underlying risk and time preferences. To study the

recovery overshooting and undershooting, we employ a consumption setting calibrated to

the U.S. economy (Section 4.1) and discuss the relevant economic features, such as aspects

21 Recall from (12) thatX ≡ 1−r(y)dt−σ2
yy

2 dt
(dy)2 . To assure thatX > 0, we need dt <

î
r(y) + σ2

y
y2

(dy)2

ó−1
.

Evidently, a small dy
y generates a small upper bound on dt. Note that this upper bound also depends on the

underlying parameters σ2
y and r(y).
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of a rare adverse event in the state space distribution, that determine the direction of the

recovery inconsistency (Section 4.2). Details on the calibration procedure and supporting

technical derivations are relegated to Appendix B.2.

4.1 Calibration and Consolidation Setup

Our analysis of the recovery inconsistency direction again adopts a tractable thought-experiment

setup in which the underlying three-state model S is calibrated to stylize the U.S. consump-

tion and aggregate stock market dynamics. Model S’s asset prices (risk-free rate and stock

index return) are obtained from the consumption dynamics in a standard setting of endow-

ment economy and representative agent with a constant relative risk aversion (CRRA). Since

the calibrated (underlying) market model S is unobserved in the thought experiment, an an-

alyst attempts to recover the underlying model using a subjective two-state specification S

The consolidation of the analyst’s subjective specification S and recovery results with the

underlying model S’s then reveals the recovery inconsistency direction and the responsible

economic features.

Calibration: For the calibration of the underlying model S, we use as input data the U.S.

household real consumption expenditure, S&P 500 index level, and 3-month Treasury Bill

rate from 1985Q1 to 2022Q4 and at quarterly frequency. Our calibration employs the general-

ized method of moments (GMM) procedure to match five model-implied stationary moments

with their counterparts in the data, namely, the expected consumption growth µc, the volatil-

ity of consumption growth σc, the risk-free rate r
f
t+1, the S&P 500 risk premium rxs

t , and the

volatility of S&P 500 return σs. Table 1 presents the summary (non-annualized) statistics

of the consumption and asset price inputs employed in our calibration. To match the basic

consumption characteristics, we calibrate three stylized underlying states S = {1, 2, 3}, in

which {1} denotes the disaster, {2} the normal, and {3} the boom state of the consumption.

Since the U.S. consumption growth distribution concentrates pronouncedly around the mean,

we employ respectively 0.1th and 99th percentiles of the time-series consumption growth to
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Variable Mean Std Dev Min 25th Median 75th Max

Consumption growth 0.0068 0.0132 -0.0990 0.0037 0.0068 0.010 0.1038
Risk-free rate 0.0076 0.0063 -0.00003 0.0006 0.0073 0.0127 0.0223

Stock index return 0.0232 0.0676 -0.2356 -0.0132 0.0307 0.0642 0.1909
Risk premium 0.0156 0.0674 -0.2379 -0.0197 0.0203 0.0587 0.1782

Table 1: Summary statistics of the consumption and asset price inputs to the calibration
(reported moments are not annualized). Risk premium denotes the return of the stock index
in excess of the risk-free rate (i.e., excess return).

delineate the disaster and boom states, and the average consumption growth to identify the

normal state. To match the basic asset price characteristics, we embed the three-state space

S in a temporal setting of one period and two dates {t, t + 1}. We employ a consumption-

based asset pricing model (CCAPM) featuring a representative agent with CRRA γ to price

and calibrate the risk-free bond and the stock market (as a contingent claim on the aggregate

consumption). Fixing the underlying risk and time preferences to be γ = 15 (the relative risk

aversion) and δ = 0.98 (the time discount factor) for simplicity, the asset price calibration

determines the underlying 3× 3 one-period transition probability matrix P of the temporal

setting (Appendix B.3 contains further details on the calibration procedure, GMM moment

conditions and estimation). Table 2 presents the calibration results for the annualized mo-

ments of the consumption and asset prices. Note that the stock index return volatility is

Description Model Data

Mean consumption growth 0.0257 0.0273
Consumption growth volatility 0.0467 0.0264

Mean risk-free rate 0.0269 0.0303
Mean risk premium (stock) 0.0688 0.0625
Stock index return volatility 0.0487 0.1351

Table 2: Calibration results of the consumption and asset price (annualized) moments. Risk
premium denotes the return of the stock index in excess of the risk-free rate (i.e., excess
return).

significantly lower, while the consumption growth volatility is higher, in the model than in

the data. These numerical values result from the constraint to match the stock index risk

premium in the calibration and data, reflecting the well-known equity risk premium puzzle
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for the current simple consumption-based asset pricing model (with CRRA γ = 15). The

standard two-stage GMM estimation yields the following stationary one-period transition

probability matrix in the physical measure and marginal utilities for the underlying model,22

P =


0.0425 0.4847 0.4727

0.0385 0.5840 0.3775

0.0192 0.5799 0.4009

 ,


M1

M2

M3

 =


4.7789

0.9029

0.6247

 , δ = 0.98, (36)

where recall that the value of the time discount factor δ is exogenously set in the thought

experiment. Several observations on the stylized features of the calibrated underlying model

are in order. First, starting from any current state {i} ∈ {1, 2, 3}, the chance of reaching state

{1} in the next period is much smaller than reaching the other two states, pi1 ≪ pi2, pi2,

∀{i} ∈ {1, 2, 3}. This characterization of the transition probabilities quantifies {1} as a

rare state. Second, the marginal utility associated with state {1} is significantly higher

than that associated with {2}, which in turn is higher than that associated with {3}, or

M1 ≫ M2 > M3. This characterization of the marginal utility ordering quantifies {1} as a

disaster, {2} as a normal, and {3} as a boom state. Third, the implied one-period AD asset

matrix A, whose i, j-entry is Aij = δ
Mj

Mi
pij, {i}, {j} ∈ {1, 2, 3}, reflects the combined effect

of transition probabilities and marginal utilities,

A =


0.0417 0.0898 0.0606

0.1999 0.5723 0.2559

0.1441 0.8215 0.3929

 . (37)

Notably, starting from any current state {i} ∈ {1, 2, 3}, the AD contract that pays off if the

disaster state realizes next period is significantly cheaper than contracts that pays off if other

two states realize, Ai1 ≪ Ai2, Ai3, ∀{i} ∈ {1, 2, 3}. Intuitively, while state {1} is undesirable

(i.e., the disaster state with a low consumption and a high marginality), its likelihood to

22Recall that the marginal utilities are determined only up to a multiplicative constant.
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realize next period is very small (regardless of any current state). As a result, the required

premium Ai1, ∀{i} ∈ {1, 2, 3}, to insure against such an adverse but highly unlikely event

is low. In other words, the exceedingly rare incidence of a disaster state sufficiently negates

the severity of that state in the underlying (calibrated) model, resulting in sufficiently low

underlying disaster state prices {Ai1}. These calibrated features are not only characteristic

to the U.S. consumption dynamics but also crucial to explain the recovery inconsistency

direction in our setting as we discuss below.

Consolidation: Once the calibration to the U.S. economy has been constructed, we take

the calibration results (36) as the underlying (but unobserved) market model S. We examine

the recovery process associated with an analyst’s subjective specification S, which is related

to the underlying S by the following consolidation scheme

 Underlying specification:

S = {1, 2, 3}
−→

 Subjective specification:

S = {1, 2} with: {1} = {1, 2}, {2} = {3}.
(38)

Note that the calibration results (36) allow us to find the AD prices Aτ ;ij initiated on the

state {i} today and maturing in τ periods in state {j}, for all states {i}, {j} ∈ S and all

periods τ .23 Below, we analyze the direction of recovery inconsistency in the subjective

specification S when the current state is either a coupled state or a single state.

4.2 Recovery Results and Discussion

To identify the economic features of the subjective specification that are relevant for the

associated recovery inconsistency direction, we analyze and contrast two alternative and

23In fact, assuming the underlying specification S is known and suppressing all information about the
underlying time discount factor and marginal utilities, the employment of these AD prices Aτ ;ij alone suffices

to pin down the full one-period AD matrix A = (Aτ )
−1

Aτ+1 (4), (15), which then uniquely recovers the
underlying model by solving the dominant eigenvalue and eigenvector, Ax = δx (2). That is, in case the
underlying (true) specification S is known, Ross (2015)’s recovery process uniquely and correctly recovers the
risk and time preferences of the underlying market model. Our thought experiment is designed to address
the alternative and practical challenge that the underlying specification S is unobserved and unknown to
the analyst.
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exhaustive scenarios, namely, the current state being a coupled state and a single state.

Current coupled state

Assume that the current underlying state is the normal state {2} in the calibration model

of the U.S. economy. As the underlying specification S is not observed, the analyst imple-

menting the recovery process necessarily perceives the current state to be {1}, which is the

coupled state that the true underlying (but unobserved) current state {2} belongs to (see

(38)). Accordingly, this scenario is referred to as the current coupled state and illustrated

in Figure 3. Given the current underlying state {2}, the consolidation scheme (38), and the

Figure 3: Underlying (left panel) and consolidated (right panel) state space specifications asso-
ciated with the consolidation scheme (38). The current underlying (true) state is {2}, which is
perceived as the coupled state {1} in the subjective specification by the analyst.

current state {1} perceived by the analyst, the thought experiment starts with consolidating

and generating the perceived AD prices Aτ ;1 j from the underlying AD prices {Aτ ;ij}, which

are observed in the setup as explained below (38). That is, Aτ ;1 j =
∑

{j}∈{j}Aτ ;2j (16),

where {j} ∈ S = {1, 2}, and τ is the maturity of the AD asset. Then follows the one-

period consolidated AD matrix A (17), its dominant eigenvalue (the time discount factor)

δ and eigenvector (the inverse marginal utilities) x (2), and the transition probabilities (3)

41



recovered by the analyst,

A =
(
Aτ

)−1
Aτ+1, Ax = δx, pt,t+1(i, j) = δ

−1
Ai j

xj

xi

, ∀i, j ∈ S = {1, 2}. (39)

Recovery results: Using the numerical values (36)-(37), the analyst obtains the one-period

consolidated AD matrix in the current setting

A =

0.3602 0.1303

1.7082 0.6193

 .

and recovers the following time discount factor δ, marginal utilities {M i}, and the one-period

transition probability matrix P in the subjective specification S

δ = 0.979,

M1

M2

 =

4.8525
1.0219

 , P =

0.3680 0.6320

0.3675 0.6325

 . (40)

Possible inconsistencies between the analyst’s recovery results (40) and the underlying (36)

and their magnitude and direction can be illustrated by contrasting these numerical values

with the implications of the current consolidation scheme (Figure 3). In particular,

δ − δ = −0.001, and


pt,t+1(1, 1)︸ ︷︷ ︸

0.3680

< pt,t+1(2, 1)︸ ︷︷ ︸
0.0385

+ pt,t+1(2, 2)︸ ︷︷ ︸
0.5840

,

pt,t+1(1, 1)︸ ︷︷ ︸
0.3680

< pt,t+1(1, 1)︸ ︷︷ ︸
0.0425

+ pt,t+1(1, 2)︸ ︷︷ ︸
0.4847

.
(41)

Other consistency conditions are also violated, implying a systematic inconsistency between

all recovered quantities in the subjective and underlying state specifications and signifying

Proposition 1’s generic assertion.24

24Adapting the consistency conditions (9), (10) to the current consolidation scheme of Figure
3, the following equations should be identically zero if no inconsistencies exist: pt,t+1(1, 1) −Ä
pt,t+1(2, 1)

M1

M2
+ pt,t+1(2, 2)

ä
= −0.42, and M2

M1

− M3

M2

pt,t+1(2,3)

1−pt,t+1(2,1)
M1
M2

−pt,t+1(2,2)
= −1.0209. Evidently, the

significant inconsistencies exist for both the analyst’s recovered transition probabilities and the recovered
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Discussion: Several observations on the comparative results (41) of the current numerical

setting are in order. First, the inconsistency in the recovered time discount factor exists

but is small and practically negligible. Second and in contrast, the inconsistency in the

recovered transition probabilities is significant. Since the analyst perceives a current state

{1}, the analyst’s recovered probability pt,t+1(1, 1) to remain in this coupled state next period

significantly undershoots the corresponding underlying transition probability, whether we use

as benchmark the transition probability (i) pt,t+1(2, 1)+pt,t+1(2, 2) associated with the current

underlying state {2}, or (ii) pt,t+1(1, 1) + pt,t+1(1, 2) associated with the current state {1}

that is not the current underlying (true) state but might be in the analyst’s perspective.25

Third, the recovery process (39) is important to understand the undershooting (41) of the

recovered probabilities in the subjective specification. For clarity, our intuitive discussion

below concentrates on the leading component of the thought experiment process underlying

(39), leaving an explicit matrix inversion analysis concerning all components to Appendix

B.2. Given an earlier observation that the inconsistency in the time discount factor is

practically negligible, our discussion also omits such an inconsistency, i.e., taking δ ≡ δ

for simplicity. We now discuss the two undershooting relationships (41) of the transition

probability in turn.

To demonstrate the first undershooting relationship, we relate and compare pt,t+1(1, 1) in

the subjective specification with the underlying pt,t+1(2, 2). The probability to remain in the

current state next period is proportional to the respective one-period AD price, pt,t+1(2, 2) =

δ−1A22 (3) and pt,t+1(1, 1) = δ−1A1 1 (39). Therefore, an undershooting of the recovered

probability to remain in the current state next period amounts to an undervaluation of the

marginal utilities.
25Since the current underlying (true) state is {2} while the analyst perceives a current coupled state
{1} = {1, 2} (Figure 3), the analyst’s perception is influenced by both the current ({2}) and non-current
({1}) underlying states. For robustness, our comparative analysis (41) considers both states {1} and {2} as
the benchmark underlying state.
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respective one-period AD price in the subjective specification

pt,t+1(1, 1) < pt,t+1(2, 2) ⇐⇒ A1 1 < A22. (42)

Note that the undervaluation of one-period AD asset prices is intrinsic to the analyst’s

subjective specification S because the one-period AD price matrix A is implied (but not

observed) from the τ -period (observable) AD prices via a recursive recovery (matrix) equa-

tion, A =
(
Aτ

)−1
Aτ+1 (39). By concentrating on the leading (diagonal) components of the

recursive recovery matrix equation and consolidating the observed τ -period AD prices, we

can transform the undervaluation (42) of the implied one-period AD price into an equivalent

(approximate but intuitive) inequality of the observed τ -period AD prices,26

Aτ+1;21 + Aτ+1;22

Aτ ;21 + Aτ ;22

<
Aτ+1;22

Aτ ;22

or equivalently,
Aτ+1;21

Aτ+1;22

<
Aτ ;21

Aτ ;22

(43)

Recall that the stationary transition probability calibrated to the underlying U.S. economy

exhibits an important feature, namely, reaching the disaster state {1} next period is an

highly unlikely event independent of current state i, or pt,t+1(i, 1) ≪ pt,t+1(i, 2), pt,t+1(i, 3),

∀i, (as observed below Equation (36)). As a result, the likelihood of reaching the disaster

state {1} relative to reaching other states in τ periods from now tends to decline with the

horizon τ , i.e., pt,t+τ+1(2,1)

pt,t+τ+1(2,2)
< pt,t+τ (2,1)

pt,t+τ (2,2)
. Consequently, the τ -period AD asset that insures

against (i.e., pays off in) the disaster state is relatively less valuable as τ increases, i.e.,

Aτ+1;21

Aτ+1;22
< Aτ ;21

Aτ ;22
. This explains inequality (43), or equivalently (42), which then implies the

first undershooting relationship of the recovered transition probability in (41).

To demonstrate the second undershooting relationship, we relate and compare pt,t+1(1, 1)

in the subjective specification with the underlying pt,t+1(1, 2). Using pt,t+1(1, 2) = δM1

M2
A12

26In the leading order, the diagonal components of the matrix equation A =
(
Aτ

)−1
Aτ+1 implies that

A1 1 ≈
Aτ+1;1 1

Aτ;1 1

. Similarly for the subjective specification, we have A22 ≈ Aτ+1;22

Aτ;22
. Next, the consolidation

in Figure 3 of the τ−period AD asset prices, Aτ ;1 1 = Aτ ;21 + Aτ ;22, ∀τ , implies the first inequality in (43).
The second inequality in (43) arises from the first after a simple algebraic simplification.
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(39) and pt,t+1(1, 1) = δA1 1 (3), we transform the undershooting of the recovered transition

probability into a respective undervaluation of the one-period AD price (similar to (42))

pt,t+1(1, 1) < pt,t+1(1, 2) ⇐⇒ A1 1 <
M1

M2

A12. (44)

By consolidating the τ -period AD asset prices and concentrating on the leading components

of the recursive recovery matrix equation, the undervaluation (44) of the (implied) one-period

AD asset price becomes an inequality involving the (observable) τ -period AD asset prices,27

Aτ+1;21 + Aτ+1;22

Aτ ;21 + Aτ ;22

<
M1

M2

Aτ+1;22

Aτ ;21

or equivalently,
1 + Aτ+1;21

Aτ+1;22

1 + Aτ ;22

Aτ ;21

<
M1

M2

. (45)

The Euler pricing equation for the τ -period AD asset prices, Aτ ;ij = δ−τpt,t+τ (i, j)
Mj

Mi
, ∀ τ ,

{i}, and {j}, further transforms the above inequality into

1 +
pt,t+τ+1(2, 1)

pt,t+τ+1(2, 2)

M1

M2

<
M1

M2

+
pt,t+τ (2, 2)

pt,t+τ (2, 1)
(46)

In the current setting calibrated to the underlying U.S. economy, state {1} is a disaster

state with elevated marginal utility, M1 > M2, implying that the first term on the LHS is

smaller than the first term on the RHS of (46). The dominance of exceedingly rare disaster

event over its severity in the disaster state price in the underlying model (as observed below

(37)) and the declining likelihood of reaching the disaster state with horizon τ (as observed

below (43)) imply that the second term on the LHS is smaller than the second term on the

RHS of (46). Together, these features explain the inequality (46), or equivalently (44) and

(45), which then imply the second undershooting relationship of the recovered transition

probability in (41).

27Similar to (43), in the leading (diagonal) order of the recursive recovery matrix equation and using
the consolidation of the τ -period AD asset prices, the left-hand side (LHS) of the first inequality in (45) is
A1 1, the right-hand side (RHS) is M1

M2
A12. The second inequality in (45) arises from the first after a simple

algebraic simplification.
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Figure 4: This figure plots the difference between the recovered one-period transition prob-
ability pt,t+1(1, 1) in the subjective specification and the corresponding combined transition

probabilities [pt,t+1(2, 1) + pt,t+1(2, 2)] in the underlying (true) model versus the severity M1

M2

of the underlying disaster state {1}. The current underlying (true) state is {2}, which is
perceived as the coupled state {1} in the subjective specification by the analyst as depicted
in Figure 3. A negative value of the difference, pt,t+1(1, 1) − [pt,t+1(2, 1) + pt,t+1(2, 2)] < 0,
indicates an undershooting of the transition probability recovered by the analyst.

To illustrate the robustness of the undershooting of recovered the transition probability

by the responsible features of the underlying market model, we vary numerically the severity

of the disaster state as quantified by the ratio of marginal utilities in disaster and normal

states M1

M2
. Figure 4 plots the difference pt,t+1(1, 1) − [pt,t+1(2, 1) + pt,t+1(2, 2)] and Figure 5

the difference pt,t+1(1, 1) − [pt,t+1(1, 1) + pt,t+1(1, 2)] between the one-period recovered and

underlying transition probabilities against the ratio M1

M2
. The plots show a robust undershoot-

ing of the recovered probability pt,t+1(1, 1) in the subjective specification for various values of

the disaster state’s severity, substantiating both undershooting relationships in (41) for a ro-

bust range of parameters. Figure 6 plots the difference rxs
t(1)−rxs

t(2) between the recovered

conditional stock market risk premium and the underlying counterpart. This difference in

the conditional risk premia is computed from the underlying and recovery results and hence
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Figure 5: This figure plots the difference between the recovered one-period transition prob-
ability pt,t+1(1, 1) in the subjective specification and the corresponding combined transition

probabilities [pt,t+1(1, 1) + pt,t+1(1, 2)] in the underlying (true) model versus the severity M1

M2

of the underlying disaster state {1}. The current underlying (true) state is {2}, which is
perceived as the coupled state {1} in the subjective specification by the analyst as depicted
in Figure 3. A negative value of the difference, pt,t+1(1, 1) − [pt,t+1(1, 1) + pt,t+1(1, 2)] < 0,
indicates an undershooting of the transition probability recovered by the analyst.

also captures the recovery inconsistencies and their direction.28 The robust overshooting

of the stock market risk premium exhibited in Figure 6 reflects the fact that the current

state {1} perceived by the analyst is an adverse state (while the true current state {2} is

normal state in the underlying model). This results in a high recovered current marginal

utility M1 (in relation to M2 (40)) compared to the true current moderate marginal utility

M2 (in relation to M1 and M3). This suppresses the current stock price obtained by the

analyst, compared to the (true) current stock price in the underlying model. The subjective

undervaluation of the stock market then translates into an overshooting of the conditional

risk premium of the stock market.

28The recovered conditional stock market risk premium rxs
t (1) is computed using the recovered marginal

utilities and probabilities (40) in the Euler pricing equation for the two-state (consolidated) CCAPM model
{1, 2} conditional on the consolidated current coupled state {1}. The underlying conditional stock market
risk premium rxs

t (2) is computed using the marginal utilities and probabilities (36) for the underlying three-
state (calibrated) CCAPM model {1, 2, 3} conditional on the underlying (true) current state {2}.
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Figure 6: This figure plots the difference between the conditional stock market risk premium
rxs

t(1) recovered using the subjective specification and its counterpart rxs
t(2) in the under-

lying (true) model versus the severity M1

M2
of the underlying disaster state {1}. The current

underlying (true) state is {2}, which is perceived as the coupled state {1} in the subjec-
tive specification by the analyst as depicted in Figure 3. A positive value of the difference,
rxs

t(1)− rxs
t(2) > 0, indicates an overshooting of the conditional stock market risk premium

recovered by the analyst.

In summary, when the current state {2} belongs to a coupled state {1} in the subjec-

tive specification, the analyst’s perceived current state is {1}, which is confounded with

another underlying (but not current) disaster state {1}. This confounding acts to elevate

the (perceived) current marginal utility, and hence, lower the (perceived) current price of the

insurances (AD assets) against the (perceived) adverse state {1} happening at future peri-

ods τ and τ + 1. But as the underlying disaster is exceedingly rare in the calibration of the

U.S. economy, the likelihood of a disaster declines with horizon τ . As a result, the analyst

currently perceives a cheaper insurance against the disaster happening at τ + 1 than at τ ,

and therefore, necessarily infers an undervalued transition probability between the adverse

state {1} at τ and at τ + 1. These economic features of the setting together explain the

undershooting of the one-period probability pt,t+1(1, 1) (41) recovered by the analyst.
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Current single state

We now assume that the current underlying state is the boom state {3} in the calibration

model of the U.S. economy. Hence, the analyst implementing the recovery process necessarily

perceives the current state to be the single state {2} because it is the state in the subjective

specification S that coincides with the true underlying state {3} (38). Accordingly, this

scenario is referred to as the current single state and illustrated in Figure 7. The recovery

Figure 7: Underlying (left panel) and consolidated (right panel) state space specifications asso-
ciated with the consolidation scheme (38). The current underlying (true) state is {3}, which is
perceived as the single state {2} in the subjective specification by the analyst.

process by the analyst in the thought experiment then follows the formalism specified in

Equation (39).

Recovery results: Using the numerical values (36)-(37), the analyst obtains the one-period

consolidated AD matrix in the current setting

A =

0.2720 0.1034

1.9599 0.6960

 . (47)

and recovers the following time discount factor, marginal utilities, and the one-period tran-
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sition probability matrix in the subjective specification

δ = 0.9816,

M1

M2

 =

6.9342
1.0106

 , P =

0.2771 0.7229

0.2910 0.7090

 . (48)

The magnitude and direction of inconsistencies between the analyst’s recovery results (48)

and the underlying (36) can be illustrated by contrasting these numerical values with the

implications of the current consolidation scheme (Figure 7). In particular,

δ − δ = 0.0016, and pt,t+1(2, 2)︸ ︷︷ ︸
0.7090

> pt,t+1(3, 3)︸ ︷︷ ︸
0.4009

(49)

We are interested in economic features responsible for the recovery inconsistencies and their

directions.

Discussion: The results reported in (49) for the current single state show the inconsistency

in both the recovered time discount factor and transition probabilities. While the time

discount factor’s inconsistency is small and practically negligible, the inconsistency in the

recovered transition probabilities is significant, similar to the findings (41) for the current

coupled state. However, in contrast to (41), the analyst’s recovered probability pt,t+1(2, 2)

to remain in the current state {2} next period significantly overshoots the (true) underlying

transition probability pt,t+1(3, 3) in (49). This change in the recovery inconsistency direction

indicates the importance of the current state (being single or coupled) in the recovery pro-

cess. In the intuitive analysis below, we again omit the practically negligible inconsistency

in the time discount factor and concentrate on the leading component of the analyst’s re-

covery process (39) for simplicity (leaving the technical analysis concerning all components

to Appendix B.2).

To demonstrate the overshooting of the recovered probability in the subjective specifi-

cation (49), we relate it to the overvaluation of the respective one-period AD price. Since
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pt,t+1(3, 3) = δ−1A33 (3) and pt,t+1(2, 2) = δ−1A2 2 (39), we have

pt,t+1(2, 2) > pt,t+1(3, 3) ⇐⇒ A2 2 > A33. (50)

Recall that the one-period AD prices are implied from the recursive recovery equation systems

involving the τ -period AD prices

Aτ+1;2 2 = Aτ ;2 1A1 2 + Aτ ;2 2A2 2, Aτ+1;33 = Aτ ;31A13 + Aτ ;32A23 + Aτ ;33A33. (51)

Given that the current state is a single state, its underlying and subjective specifications

coincide, {2} ≡ {3}. Hence the analyst correctly observe τ -period AD prices for all lengths

τ , i.e., Aτ ;2 2 = Aτ ;33 and Aτ+1;2 2 = Aτ+1;33. The substitution of these identities into the two

recursive pricing equations in (51) produces an equivalent condition for the overvaluation of

the implied one-period AD price (50), A2 2 > A33 ⇐⇒ Aτ ;2 1A1 2 < Aτ ;31A13+Aτ ;32A23. Using

the consolidation scheme (38), Aτ ;2 1 = Aτ ;31 + Aτ ;32, we can express this condition for the

overvaluation of the implied AD price into an equivalent inequality involving the observed

τ -period AD prices,

A1 2 <
Aτ ;31A13 + Aτ ;32A23

Aτ ;31 + Aτ ;32

=
Aτ ;31A13 + Aτ ;32A23

Aτ ;32

Ä
1 + Aτ ;31

Aτ ;32

ä . (52)

That is, a complementarity between the implied one-period AD prices A2 2 (overvalued) and

A1 2 (undervalued) exists to make sure that the analyst correctly observes the τ -period AD

prices, Aτ ;2 2 = Aτ ;33, for all τ (51). The dominance of exceedingly rare disaster event over its

severity in the disaster state price in the underlying model (as observed below (37)) and the

declining likelihood of reaching the disaster state {1} with horizon τ (as observed below (43))

results in a low price for AD assets paying off in the disaster state, Aτ ;31

Aτ ;32
≪ 1. Therefore, in
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the leading order, inequality simplifies to

A1 2 <
Aτ ;31A13 + Aτ ;32A23

Aτ ;32

= A23 +
Aτ ;31

Aτ ;32

A13 ≈ A23. (53)

Note that because the coupled state {1} = {1, 2} perceived by the analyst contains the

underlying (true) disaster state {1}, the price A1 2 of the AD asset initiated on that state

{1} is relatively low due to the high current marginal utility,29 explaining inequality (53). In

the numerical calibration (see (37) and (47)), the inequality indeed holds, 0.1034 = A1 2 <

A23 = 0.2559. As a result, it also explains the equivalent undershooting of A1 2 (52), the

overshooting of the recovered probability in the subjective specification (50) and then (49).
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Figure 8: This figure plots the difference between the recovered one-period transition proba-
bility pt,t+1(2, 2) in the subjective specification and the corresponding transition probability

pt,t+1(3, 3) in the underlying (true) model versus the severity M1

M2
of the underlying disaster

state {1}. The current underlying (true) state is {3}, which is perceived as the single state
{2} in the subjective specification by the analyst as depicted in Figure 7. A positive value
of the difference, pt,t+1(2, 2) − pt,t+1(3, 3) > 0, indicates an overshooting of the transition
probability recovered by the analyst.

To illustrate the robustness of the overshooting of recovered the transition probability by

29As A1 2 ∼
M2

M1

, the AD asset A1 2 is inexpensive because it insures against (i.e., pays off in) the boom

state 2 tomorrow, the state in which the analyst is well-off (i.e., having a relatively low marginal utility M2).
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Figure 9: This figure plots the difference between the conditional stock market risk pre-
mium rxs

t(2) recovered using the subjective specification and its counterpart rxs
t(3) in the

underlying (true) model versus the severity M1

M2
of the underlying disaster state {1}. The

current underlying (true) state is {3}, which is perceived as the single state {2} in the sub-
jective specification by the analyst as depicted in Figure 7. A positive value of the difference,
rxs

t(2)− rxs
t(3) > 0, indicates an overshooting of the conditional stock market risk premium

recovered by the analyst.

the responsible features of the underlying market model, we vary numerically the severity of

the disaster state as quantified by the ratio of marginal utilities in disaster and normal states

M1

M2
. Figure 8 plots the difference pt,t+1(2, 2) − pt,t+1(3, 3) between the one-period recovered

and underlying transition probabilities against the ratio M1

M2
. The plot shows a robust over-

shooting of the recovered probability pt,t+1(2, 2) in the subjective specification for various

values of the disaster state’s severity, substantiating the overshooting relationship (49) for

a robust range of parameters. Figure 9 plots the difference rxs
t(2)− rxs

t(3) between the re-

covered conditional stock market risk premium and the underlying counterpart.30 Similar to

Figure 6, the difference in conditional stock market risk premia across the recovered and un-

30Per Figure 7, the recovered conditional stock market risk premium rxs
t (2) is computed using the recovered

marginal utilities and probabilities (48) for the two-state (consolidated) CCAPM model {1, 2} conditional on
the consolidated current coupled state {2}. The underlying conditional stock market risk premium rxs

t (3)
is computed using the marginal utilities and probabilities (36) in the Euler equation for the underlying
three-state (calibrated) CCAPM model {1, 2, 3} conditional on the underlying (true) current state {3}.
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derlying models are results of the recovery inconsistencies (the relative magnitude of current

marginal utilities and transition probabilities starting from current states in consolidated

and underlying models, in particular).

In summary, when the current state is a single boom state {3}, the analyst’s subjective

specification of the current state {2} is correct, i.e., {2} = {3}. This assures that the

analyst correctly observes the current price of the insurance against the event of remaining

in the boom state at τ + 1, or Aτ+1;2 2 = Aτ+1;33. The U.S. economy calibrated model’s

exceedingly rare disaster state features a declining disaster’s insurance price with the horizon,

Aτ+1;2 1 < Aτ ;2 1. Therefore, to counter this outsized contribution of the τ -period insurance

price Aτ ;2 1 to the correctly observed τ + 1-period contingent price Aτ+1;2 2, the analyst

necessarily infers an undervalued one-period (from τ to τ+1) asset price A1 2, or equivalently,

an overvalued complementary price A2 2.
31 The latter asset overvaluation amounts to an

overshooting of the corresponding probability pt,t+1(2, 2) recovered by the analyst. These

features together therefore explain the overshooting of the one-period transition probability

(49).

5 Conclusion

This paper investigates the implementability aspects of a consistent recovery of time and

risk preferences and the state probability distribution in the physical measure from asset

prices. The recovery process requires a subjective input specification of the state space

since such a specification is not observed prior to the recovery implementation. Different

input specifications therefore lead to different recovery results that are mutually inconsistent

unless the underlying market model satisfies a strong necessary and sufficient condition. The

31First, note that the contribution of the τ -period AD asset price Aτ ;2 1 to the τ +1-period AD asset price

Aτ+1;2 2 is via the product Aτ ;2 1A1 2 (see the first recursive equation in (51)). When Aτ+1;2 2 is correctly

observed, a (perceived) overvaluation of Aτ ;2 1 by an analyst is necessarily accompanied (and countered) by

a (perceived) undervaluation of A1 2 by the same analyst. Second, the complementarity of the perceived AD
prices A1 2 and A2 2 is observed below Equation (52).
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inconsistency in the recovery results arises because the transition between different input

specifications induces inadvertent but irreversible losses of information in the price data. As

a result, the recovery consistency issue prevails in the presence of perfect (unlimited and

error-free) price data and sophisticated input specifications. In the limit of a continuous

state space specification, the inconsistency of the recovery results persists and can be seen

as a result of an improper subjective discretization of the state space. A model calibrated to

the U.S. economy that features a stylized rare disaster state helps to elucidate the direction

(overshooting vs. undershooting) of the recovery results. Extensions to the original recovery

framework, such as the generalized and best-fit recovery approaches, do not solve the recovery

consistency issue because their implementation also requires a subjective input specification

for the underlying state space. These findings indicate an elusive nature of implementing a

consistent recovery process.
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Internet Appendices

(not intended for publication)

These online appendices provides supporting details and technical derivations for the findings

and analysis of the main text. Appendix A presents a proof of Proposition 1. Appendix B addresses

the inconsistency and its direction in the recovery; Appendix B.1 concerns the perturbative analysis,

and Appendices B.2 and B.3 the proof and calibration of the direction of the recovery inconsistency.

Appendix C addresses the extensions to the basic recovery; Appendix C.1 concerns the generalized

recovery and Appendix C.2 the best-fit implementation of both the basic and generalized recoveries.

A Consistency Conditions in Recovery

This appendix present a proof of Proposition 1. The proof addresses separately whether the current

state is a single or a coupled state.

Case 1 - Single Current State: We consider an original specification of S = {1, · · · , S} and

a consolidated specification S = {1, 2, · · · ,K, S}, which are adopted by two analysts. The map-

ping (or consolidation scheme) between the two specifications is as follows: {1} = {1}, {2} =

{2}, · · · , {K} = {K}, and {S} = {K+1, · · · , S}. Suppose that the current state is the single state

{1} for the second (consolidated) analyst, and {1} for the first (original) analyst.

In the first direction of the proof (i.e., proving the sufficient condition in (21)), we assume

consistent recoveries under both specifications. As a result, the following no-arbitrage conditions

on observed price data must be satisfied for the two consistent specifications:

Aτ+1;1i =

{S}∑
j={1}

Aτ ;1jAji, ∀{i} ∈ S and ∀τ ∈ {1, 2, 3, · · · } (54)

Aτ+1;1 i =

{S}∑
{j}={1}

Aτ ;1 jAj i, ∀{i} ∈ S and ∀τ ∈ {1, 2, 3, · · · } (55)

Aτ ;1 i =
∑

{j}⊂{i}

Aτ ;1j , ∀{i} ∈ S and ∀τ ∈ {1, 2, 3, · · · }. (56)

1



The above equation system holds for any horizon τ in the future. However, AD price matrices

A and A contain a fixed number of entries to be solved for, resulting in an overidentified equation

system. In particular, we substitute (56) into (55) and obtain

∑
{j}⊂{i}

Aτ+1;1j =

{S}∑
{j}={1}

Ñ ∑
{k}⊂{j}

Aτ ;1k

é
Aj i, ∀{i} ∈ S and ∀τ ∈ {1, 2, 3, · · · }. (57)

The equation system, (54) and (57), has an infinite number of equations but only S2 + (K + 1)2

unknowns. Hence, in order for the system to have a solution, the entries in A must satisfy

Ai j =
∑

{j}⊂{j}

Aij , ∀{i} = {i} ∈ {1, · · · ,K} and {j} ∈ S (58)

AS j =
∑

{j}⊂{j}

Aij , ∀{i} ⊂ {S} and {j} ∈ S, (59)

so that by summing up the equations (54) in states {i} ⊂ S we obtain (57).

Given that the AD price matrix A of the original specification S satisfies (58) and (59), the

eigenvector, x = [x1, · · · , xS ]′, associated with the largest and positive eigenvalue δ will satisfy the

following form:



A11 . . . A1K A1,K+1 . . . A1S

...
. . .

...
...

. . .
...

AK1 . . . AKK AK,K+1 . . . AKS

AK+1,1 . . . AK+1,K AK+1,K+1 . . . AK+1,S

...
. . .

...
...

. . .
...

AS1 . . . ASK AS,K+1 . . . ASS





x1
...

xK

xK+1 = xS
...

xS = xS


= δ



x1
...

xK

xK+1 = xS
...

xS = xS


, (60)

which implies the marginal utilities satisfy Mi = Mk, for all {i} and {k} belonging to the same

coupled state. By the formula of recovered probabilities (3), it is easy to show that pih =

pkh, ∀{i}, {k} ⊂ {j}, {j}, {h} ∈ S.

Next, we prove the other direction (i.e., proving the necessary condition in (21)). We assume

that the inputs of the original specification satisfy Mi = Mk, pih = pkh, ∀{i}, {k} ⊂ {j}, {j}, {h} ∈

2



S. According to (3), the original AD price matrix A satisfy

∑
{j}⊂{j}

Aij =
∑

{j}⊂{j}

Akj , ∀{i}, {k} ⊂ {S} and {j} ∈ S. (61)

Since our primary analysis concerns consistency, we assume without loss of generality that S

is the true model. Consequently, we have Aτ+1 = AτA holds for all horizon τ . No-arbitrage

restriction of trade assets gives (56). These conditions together with (61) imply that Aτ+1 = AτA

also holds for all τ and thus we obtain (58) and (59). Consequently, applying the recovery equation

(3), we have

δ = δ;
M j

Mj
=

M1

M1
, ∀{j} = {j} ∈ {1, · · · ,K};

pt,t+1(1, j) = pt,t+1(1, j), ∀{j} = {j} ∈ {1, · · · ,K}, ∀t; (62)

pt,t+1(1, S) =

{S}∑
{j}={K+1}

pt,t+1(1, j), ∀t;
MS

M1

=

{S}∑
{j}={K+1}

pt,t+1(1, j)∑{S}
{i}={K+1} pt,t+1(1, i)

Mj

M1
, ∀t.

That is, all consistency conditions are satisfied, establishing the recovery consistency for the case

of single current state.

Case 2 - Coupled current state: We consider an original specification of S = {1, · · · , S}

and a consolidated specification S = {1,K + 1, · · · , S − 1, S}, which are adopted by two ana-

lysts. The mapping (or consolidation scheme) between the two specifications is as follows: {1} =

{1, · · · ,K}, {K + 1} = {K + 1}, {K + 2} = {K + 2}, · · · {S − 1} = {S − 1}, and {S} = {S}. Sup-

pose that the current state is the coupled state {1} for the second (consolidated) analyst and {1}

for the first (original) analyst.

In the first direction of the proof (i.e., proving the sufficient condition in (21)), we assume

consistent recoveries under both specifications. As a result, the same no-arbitrage conditions (54)–

(56) for Case 1 on observed price data must be satisfied for the two consistent specifications. We

again obtain the equation system (54) and (57). In order for the system to have a solution, the
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entries in A must satisfy

A1 j =
∑

{j}⊂{j}

Aij , ∀{i} ⊂ {1} and {j} ∈ S, (63)

Ai j =
∑

{j}⊂{j}

Aij , ∀{i} = {i} ∈ {K + 1, · · · , S} and {j} ∈ S, (64)

so that by summing up the equations (54) in states {i} ⊂ {1} we obtain (57).

Given that the AD price matrix A of the original specification S satisfies (63) and (64), the

eigenvector, x = [x1, · · · , xS ]′, associated with the largest and positive eigenvalue δ will satisfy the

following form:



A11 . . . A1K A1,K+1 . . . A1S

...
. . .

...
...

. . .
...

AK1 . . . AKK AK,K+1 . . . AKS

AK+1,1 . . . AK+1,K AK+1,K+1 . . . AK+1,S

...
. . .

...
...

. . .
...

AS1 . . . ASK AS,K+1 . . . ASS





x1 = x1
...

xK = x1

xK+1

...

xS


= δ



x1 = x1
...

xK = x1

xK+1

...

xS


(65)

which implies the marginal utilities satisfy Mi = Mk, for all {i} and {k} belonging to the same

coupled state. By the formula of recovered probabilities (3), it is easy to show that pih =

pkh, ∀{i}, {k} ⊂ {j}, {j}, {h} ∈ S.

Next, we prove the other direction (i.e., proving the necessary condition in (21)). We assume

that the inputs of the original specification satisfy Mi = Mk, pih = pkh, ∀{i}, {k} ⊂ {j}, {j}, {h} ∈

S. According to (3), the original AD price matrix A satisfy

∑
{j}⊂{j}

Aij =
∑

{j}⊂{j}

Akj , ∀{i}, {k} ⊂ {1} and {j} ∈ S. (66)

Since our primary analysis concerns consistency, we assume without loss of generality that

S is the true model. Consequently, we have Aτ+1 = AτA holds for all horizon τ . No-arbitrage

restriction of traded assets gives (56). These conditions together with (66) imply that Aτ+1 = AτA
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also holds for all τ and thus we obtain (63) and (64). Consequently, applying the recovery equation

(3), we have

δ = δ; pt,t+1(1, 1) =

{K}∑
{j}={1}

pt,t+1(1, j), ∀t;

pt,t+1(1, j) = pt,t+1(1, j)
1−

∑{K}
{i}={1} pt,t+1(1, i)

1−
∑{K}

{i}={1}
Mi
M1

pt,t+1(1, i)
, ∀{j} = {j} ∈ {K + 1, · · · , S}, ∀t; (67)

M j

M1

=
Mj

M1

1−
∑{K}

{i}={1} pt,t+1(1, i)

1−
∑{K}

{i}={1}
Mi
M1

pt,t+1(1, i)
, ∀{j} = {j} ∈ {K + 1, · · · , S}, ∀t.

That is, all consistency conditions are satisfied, implying the recovery consistency for the case of

coupled current state. Together with the derivation above for the case of single current state, this

establishes Proposition 1 ■

B Recovery Inconsistency and Direction

This appendix provides technical background and derivations for the recovery inconsistency analysis

of the main text. Appendix B.1 concerns a perturbative formalism, Appendix B.2 the derivation

of the inconsistency direction of the recovery, and Appendix B.3 the calibration details.

B.1 Perturbative Results: Derivations

This appendix derives Section 3.3’s results by relating the perturbative recovery equation system

to Vandermonde matrix. This connection yields explicit expressions for the perturbative recovered

quantities in the original and consolidated specifications (with any numbers of states).

Recall that Section 3.3’s perturbative setting features an underlying (true but unobserved)

model {1, 2, 3, 4} associated with marginal utilities (26) and the current (true) state {1}. Two

analysts perceive subjective (simple) model a and (sophisticated) model b specified in (25) with

respective consolidation schemes {1a} = {1}, {2a} = {2, 3, 4} and {1b} = {1}, {2b} = {2}, {3b} =

{3, 4}. Recovery results of models a and b are related via their relations to the underlying model.
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The derivation proceeds in the following steps to obtain: (i) the perturbative component B
i
τ and

unperturbed component A
i
τ of the τ -period AD price matrix (28), (ii) the inverse matrix

Ä
A

i
τ

ä−1

(29) to be used in (31), and (iii) the perturbative recovered time discount factors δi1(ε), i ∈ {a, b},

(32), (33).

Step (i): The τ -period AD asset prices in the (simple) model a arises from the underlying τ -period

AD asset prices via no-arbitrage relationships,

Aτ ;1 1 = Aτ ;11 = δτpt,t+τ (1, 1),

Aτ ;1 2 = Aτ ;12 +Aτ ;13 +Aτ ;14 = δτ (pt,t+τ (1, 2)M2 + pt,t+τ (1, 3)M3 + pt,t+τ (1, 4)M4)

= δτ (pt,t+τ (1, 2) + pt,t+τ (1, 3) + pt,t+τ (1, 4))M2 + εδτ (2pt,t+τ (1, 3) + 3pt,t+τ (1, 4)) .

Stacking these relationships into the matrix form give rise to the perturbative expansion A
a
τ (ε) =

A
a
τ + εB

a
τ in (28), where the perturbative component B

a
τ of the τ -period AD price matrix A

a
τ for

analyst a is

B
a
τ =



0 δ(2pt,t+1(1, 3) + 3pt,t+1(1, 4))

0 δ2(2pt,t+2(1, 3) + 3pt,t+2(1, 4))

...
...

0 δτ (2pt,t+τ (1, 3) + 3pt,t+τ (1, 4))


. (68)

Similarly for model b, the no-arbitrage relationships and the perturbative expansion A
b
τ (ε) =

A
b
τ + εB

b
τ (28) have the following explicit expressions

Aτ ;1 1 = Aτ ;11 = δτpt,t+τ (1, 1), Aτ ;1 2 = Aτ ;11 = δτpt,t+τ (1, 2),

Aτ ;1 3 = Aτ ;13 +Aτ ;14 = δτ (pt,t+τ (1, 3) + pt,t+τ (1, 4))M2 + εδτ (2pt,t+τ (1, 3) + 3pt,t+τ (1, 4)) .
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and

B
b
τ =



0 0 δ(2pt,t+1(1, 3) + 3pt,t+1(1, 4))

0 0 δ2(2pt,t+2(1, 3) + 3pt,t+2(1, 4))

...
...

...

0 0 δτ (2pt,t+τ (1, 3) + 3pt,t+τ (1, 4))


. (69)

Let A
i
τ (t, :) denote the t-th row of the unperturbed τ -period (unperturbed) AD price matrix A

i
τ ,

i ∈ {a, b} in (31). The definition (4) of the τ -period AD price matrix shows that its t-th row

contains the prices of S
i
AD assets initiated on the current state {1i} = {1} and paying off in

one of states {1, . . . , Si} in t periods (t ≤ τ). Since the left eigenvectors
{
wi

k

}
, k ∈ {1, . . . , Si}

(31), span the S
i
-dimensional vector space, we look for the 1-st row vector A

i
τ (1, :) in the following

form,1

A
i
τ (1, :) =

{Si}∑
{k}={1}

αi
kw

i′
k , i ∈ {a, b}. (70)

Recall that entries in the rowA
i
τ (1, :) are prices of AD assets initiated on the current state {1i} = {1}

and maturing next period, so A
i
τ (1, :) is also the first row of the one-period full AD price matrix

A
i
. Let X

i
and W

i
denote the matrices of right and left eigenvectors the one-period AD price

matrix A
i
. That is, columns of X

i
are right eigenvectors, columns of W

i
(or equivalently, rows of

W
i′
) are left eigenvectors, of A

i
. Then follows the diagonalization,

A
i
= W

i
Diag

Ä
δi1, . . . , δ

i

S
i

ä Ä
X

i
ä′
, with the normalization W

i′
X

i
= 1

S
i×S

i . (71)

Equipped with the mutual orthogonality of left and right eigenvectors of a matrix, to determine

coefficients {αi
k}, we multiply to the right of both sides of (70) by the k-th (column) right eigenvector

xi
k and obtain

αi
k = δikx

i
k1, k ∈ {1, . . . , Si}, i ∈ {a, b}, (72)

where xik1 is the 1st-th element of the k-th right eigenvector xi
k.

1Note that the left eigenvectors
{
wi

k

}
, k ∈ {1, . . . , Si}, are S

i × 1 column vectors in our notation. Hence

their transposed wi′

k , k ∈ {1, . . . , S
i}, are 1 × S

i
row vectors that span the space of S

i
-dimensional row

vectors.
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Next, note that the 2-nd row A
i
τ (2, :) of the τ -period (unperturbed) AD price matrix is the 1-st

row A
i
τ+1(1, :) of the τ + 1-period AD price matrix. Hence, using the recursive equation system

A
i
τ+1 = A

i
τA

i
(the second system in (15), which originates from (4)), the 2-nd row of the τ -period

(unperturbed) AD price matrix is

A
i
τ (2, :) = A

i
τ (1, :)A

i
=

Ñ
{Si}∑

{k}={1}

αi
kw

i′
k

é
A

i
=

{Si}∑
{k}={1}

αi
kδ

i
kw

i′
k , i ∈ {a, b},

because wi′
k is the k-th left eigenvector of the one-period AD price matrix A

i
. Repeating this

procedure yields all rows of the τ -period (unperturbed) AD price matrix,

A
i
τ (t, :) =

{Si}∑
{k}={1}

αi
k

(
δik
)t−1

wi′
k , t ∈ {1, . . . , Si}, i ∈ {a, b}, (73)

with αi
k = δikx

i
k1, k ∈ {1, . . . , S

i}, (72). Stacking rows (73) produce an explicit expression for the

τ -period (unperturbed) AD price matrix A
i
τ ,

A
i
τ =



αi
1 αi

2 · · · αi

S
i

αi
1δ

i
1 αi

2δ
i
2 · · · αi

S
iδ

i

S
i

αi
1

(
δi1
)2

αi
2

(
δi2
)2 · · · αi

S
i

Ä
δi
S
i

ä2
...

...
...

...

αi
1

(
δi1
)Si−1

αi
2

(
δi2
)Si−1 · · · αi

S
i

Ä
δi
S
i

äSi−1


︸ ︷︷ ︸

≡Di

×



wi′
1

wi′
2

wi′
3

...

wi′

S
i


︸ ︷︷ ︸
=W

i′

, i ∈ {a, b}. (74)

Step (ii): The inverse of the τ -period (unperturbed) AD price matrix (74) isÄ
A

i
τ

ä−1
=
(
W

i′
)−1 (

Di
)−1

= X
i (
Di
)−1

, i ∈ {a, b}, (75)

where the last equality arises from the normalization W
i′
X

i
= 1

S
i×S

i of the right and left eigenvec-

tor matrices of the one-period AD price matrix A
i
in the diagonalization (71). To obtain

Ä
A

i
τ

ä−1
,

we need an explicit expression for the inverse matrix
(
Di
)−1

, where Di defined in (74) can be
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rewritten as

Di =



1 1 · · · 1

δi1 δi2 · · · δi
S
i(

δi1
)2 (

δi2
)2 · · ·

Ä
δi
S
i

ä2
...

...
...

...(
δi1
)Si−1 (

δi2
)Si−1 · · ·

Ä
δi
S
i

äSi−1


︸ ︷︷ ︸

≡Gi

Diag
Ä
αi
1, α

i
2, · · · , αi

S
i

ä
, i ∈ {a, b}. (76)

We observe that S
i × S

i
matrix Gi defined above is the Vandermonde matrix, whose applications

and properties (its determinant and inverse matrix) have been well studied in the literature (see

(81) below). In particular, the explicit expression for the inverse of the Vandermonde matrix Gi

(76) reads (see, e.g., Man (2017)),

(
Gi
)−1

=


h11 . . . h

1S
i

...
. . .

...

h
S
i
1

. . . h
S
i
S
i

 , i ∈ {a, b}, (77)

with

hmk =

(
δim
)Si−k

+ a1
(
δim
)Si−k−1

+ . . .+ a
S
i−k−1

(
δim
)
+ a

S
i−k∏

j ̸=m(δim − δij)
, m, k ∈ {1, . . . , Si},

and

a0 = 1; a1 = −
∑
j

δij ; a2 =
∑
j ̸=m

δijδ
i
m; . . . ; a

S
i−1

= (−1)S
i−1
∏
j

δij ,

and ak = 0 for all k < 0. Combining (75) and (76) yields the inverse of τ -period (unperturbed) AD

price matrix Ä
A

i
τ

ä−1
= X

i
Diag

(
1

αi
1

,
1

αi
2

, · · · , 1

αi

S
i

)(
Gi
)−1

, i ∈ {a, b}, (78)

where
(
Gi
)−1

is given explicitly in (77) and αi
k in (72).
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Step (iii): Recall from (31) that the perturbative component of the recovered time discount factor

is ∆δi =
(wi

1)
′
B

i
xi
1

(wi
1)

′
xi
1

. Using (29) and the fact that xi
1 is the first (right) eigenvector of the one-period

AD price matrix, A
i
xi
1 = δi1x

i
1, the numerator of this perturbative component is

(
wi

1

)′
B

i
xi
1 =

(
wi

1

)′ Ä
A

i
τ

ä−1 Ä
B

i
τ+1 −B

i
τA

i
ä
xi
1 =

(
wi

1

)′ Ä
A

i
τ

ä−1 Ä
B

i
τ+1 − δi1B

i
τ

ä
xi
1.

Using the expression (78) for the inverse of τ -period AD price matrix and the mutual orthonormality

between left and right eigenvectors wi
j and xi

k of the one-period AD price matrix, we can further

simplify the above quantity to

(
wi

1

)′
B

i
xi
1 =

(
wi

1

)′
X

i
Diag

(
1

αi
1

,
1

αi
2

, · · · , 1

αi

S
i

)(
Gi
)−1
Ä
B

i
τ+1 − δi1B

i
τ

ä
xi
1

=

ï
1 0 0 · · · 0

ò
Diag

(
1

αi
1

,
1

αi
2

, · · · , 1

αi

S
i

)(
Gi
)−1
Ä
B

i
τ+1 − δi1B

i
τ

ä
xi
1

=

ï
1
αi
1

0 0 · · · 0

ò (
Gi
)−1
Ä
B

i
τ+1 − δi1B

i
τ

ä
xi
1,

Substituting in the expressions (68), (69) for matrices B
i
τ , B

i
τ+1, i ∈ {a, b}, the quantity above

becomes

(
wi

1

)′
B

i
xi
1 =

ï
1
αi
1

0 0 · · · 0

ò (
Gi
)−1



0 0 · · ·
(
δi1
)2

(P2 − P1)

0 0 · · ·
(
δi1
)3

(P3 − P2)

...
...

...
...

0 0 · · ·
(
δi1
)Si

(P
S
i − P

S
i−1

)





xi11

xi12
...

xi
1S

i


, i ∈ {a, b},

(79)

with Pτ = 2pt,t+τ (1, 3) + 3pt,t+τ (1, 4), (80)

and αi
1 = δi1x

i
11 (72) and

(
Gi
)−1

given in (77). Substituting the above expression for
(
wi

1

)′
B

i
xi
1

into (31) yields the perturbative recovered time discount factors δa1(ε) (32) and δb1(ε) (33). Note

that models a and b converge to the consistent setting (scheme (25) and Proposition 1) when the

perturbation parameter ε = 0. Therefore, the unperturbed dominant eigenvalues coincide δa1 = δb1,

so we drop the superscript i in formulas (32), (33) the main text ■
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A digression on the Vandermonde matrix: To relate the Vandermonde matrix to the recovery set-

ting, we recall a well-known application of this matrix (and its inverse). This application con-

cerns the exact fitting of a (n − 1)−degree polynomial f(x) that passes through n given points

{(x0, y0) . . . (xn−1, yn−1)}. The fitting “recovers” n unknown coefficients {a0, . . . , an−1} of polyno-

mial f(x) via an equation system

Vandermonde system:



a0 + a1x0 + a2x
2
0 + . . .+ an1x

n−1
0 = y0,

a0 + a1x1 + a2x
2
1 + . . .+ an1x

n−1
1 = y1,

...

a0 + a1xn−1 + a2x
2
n−1 + . . .+ an1x

n−1
n−1 = yn−1,

(81)

A change of notation relates this equation system to our recovery setting (76). Replacing S
i
by n

and δik by xk (for k ∈ {1, . . . , Si}) in the matrix Gi (76), the Vandermonde equation system (81)

can be written in the matrix form as [a0 a1 . . . an−1]G
i = [y0 y1 . . . , yn−1]. From this follows a

unique solution for the coefficients, [a0 a1 . . . an−1] = [y0 y1 . . . yn−1]
(
Gi
)−1

.

B.2 Recovery Inconsistency Direction: Derivations

This appendix provides technical derivations underlying the intuitive analysis of Section 4.2 on the

recovery inconsistency direction of a market model calibrated to the U.S. economy. Recall that the

calibrated model has the underlying specification S perceived by the first analyst and a consolidated

specification S perceived by the second analyst (38),

S = {1, 2, 3} S = {1, 2} with: {1} = {1, 2}, {2} = {3}, (82)

where {1}, {2} and {3} respectively denotes a rare disaster, a normal, and a boom state (in order of

decreasing marginal utility). For a consistent referencing, the three-state calibrated U.S. economy

in our analysis below (and in Section 4.2) of the recovery inconsistency direction is specified in

Equations (36) (for the transition probabilities, marginal utilities and time preference) and (37)

(for the associated one-period AD asset price matrix). As in Section 4.2, we consider with two

11



cases of current coupled and single states.

Case 1 - Current coupled state: Let the current underlying state be the normal state {2}. Per the

consolidation scheme (82), the second analyst perceives the current state {1}, which is a coupled

state. The following lemma presents sufficient conditions for the undershooting (41) of the transition

probabilities recovered in our calibration.

Lemma 1 When the underlying market model (associated with the specification S) features (i)

A23A32 < A22A33 and (ii) A22 + A33 < A23 + A32, then follows the undershooting of the recovered

transition probabilities,

pt,t+1(1, 1) < pt,t+1(2, 1) + pt,t+1(2, 2), pt,t+1(1, 1) < pt,t+1(1, 1) + pt,t+1(1, 2), (83)

As discussed in Section 4.2, the key economic intuition of these sufficient conditions on the incon-

sistency direction (undershooting) of the recovered transition probabilities is the presence of a rare

adverse consumption state (state {1} in the calibrated U.S. economy model.

Proof: We first obtain an explicit expression for the implied one-period AD price matrix A before

relate it to the transition probabilities {pi,j} in the consolidated specification. Note that the cal-

ibrated numerical values for the time discount factors δ and δ are very similar (41), so to a good

approximation, we take δ = δ in the analysis. After consolidating long-term AD asset prices in Aτ

associated with S into those in Aτ associated with S,2 the implied one-period AD price matrix

A =
[
Aτ

]−1
Aτ+1 (39) has the following explicit solution (using 3 first horizons τ ∈ 1, 2, 3),

A =

 A21 +A22 A23

A2;21 +A2;22 A2;23


−1 A2;21 +A2;22 A2;23

A3;21 +A3;22 A3;23

 =
1

det(Aτ )
× (84)

×

 A2;23(A2;21 +A2;22)−A23(A3;21 +A3;22) A2
2;23 −A23A3;23

−(A2;21 +A2;22)
2 + (A21 +A22)(A3;21 +A3;22) −A2;23(A2;21 +A2;22) +A3;23(A21 +A22)

 .

(85)

2This amounts to summing the first two columns of Aτ , per Footnote 8 and the consolidation scheme
(82).
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To obtain the first undershooting in (83), we derive a stronger inequality pt,t+1(1, 1) < pt,t+1(2, 2),

which is equivalent to A1 1 < A22 by virtue of the pricing equation (3) for one-period AD assets.

Using solution (84), we can write this inequality as

A2;23(A2;21 +A2;22)−A23(A3;21 +A3;22)

(A21 +A22)A2;23 − (A2;21 +A2;22)A23
< A22. (86)

Using again the recursive relationship Aτ+1 = AτA, or explicitly,

A2;21 = A21A11 +A22A21 +A23A31

A2;22 = A21A12 +A2
22 +A23A32

A2;23 = A21A13 +A22A23 +A23A33 (87)

A3;21 = A2;21A11 +A2;22A21 +A2;23A31

A3;22 = A2;21A12 +A2;22A22 +A2;23A32.

we can express the denominator (denoted as D2) of the fraction on the LHS of (86) as,3

D2 = A21A13(A21 +A22)−A21A23(A11 +A12) +A22A33(A21 +A22)−A2
23(A31 +A32)

≈ A22A33(A21 +A22)−A2
23(A31 +A32) ≈ A2

22A33 −A2
23A32.

(88)

Note that because the normal state {2} is associated with a higher marginal utility than the boom

state {3} (while transition probabilities to these states are similar) in the calibrated model, we

have A22 > A23. Combining this with Lemma 1’s condition (i) (that A22A33 > A23A32), we have a

positive denominator D2 > 0 for the fraction on the LHS of (86), transforming (86) into

A2;23(A2;21 +A2;22)−A23(A3;21 +A3;22) < A22 [(A21 +A22)A2;23 − (A2;21 +A2;22)A23] .

3The first approximation in (88) arises from the argument below Equation (37). Namely, the exceedingly
rare incidence of a disaster state {1} in the underlying model sufficiently negates the severity of that state,
resulting in a sufficiently low underlying disaster state price (and prices of AD assets paying off in state {1}),
we have A21A13(A21+A22) is dominated by A22A33(A21+A22) (because the first group is quadratic in Ai1,
and the second is linear in Ai1), and similarly A21A23(A11 + A12) is dominated by A2

23(A31 + A32), giving
rise to the first approximation. The second approximation in (88) by a similar argument, which implies the
dominance of A21 by A22, and A31 by A32.
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Using relationships (87) to substitute out the longer-term AD prices {A2;ij}, {A3;ij}, and rearrang-

ing terms, the above inequality becomes

[A22(A21A11 +A23A31)−A21(A21A12 +A23A32)]A23

+[A21(A21A13 +A23A33)−A23(A21A11 +A23A31)](A11 +A12) < 0.
(89)

We simplify the above inequality by concentrating on the dominant terms (again because {1} is a

rare disaster state),

[A22A23A31 −A21A23A32]A23 + [A21A23A33 −A23A23A31](A11 +A12) < 0 (90)

Note that A22A31 < A21A32 and (A11+A12) < A23,
4 the LHS of the inequality (90) is smaller than

[A22A23A31 −A21A23A32 + A21A23A33 −A23A23A31]A23. Then a sufficient condition for (90) is

[A22A23A31 −A21A23A32 +A21A23A33 −A23A23A31]A23 < 0

⇔ [A22A31 −A21A32 +A21A33 −A23A31] = A31(A22 −A23)−A21(A32 −A33) < 0.
(91)

Because the chance of reaching the disaster state {1} from the boom state {3} is lower than from

from the normal state {2}, i.e., p31 < p21, whose effect also dominates the difference between the

marginal utilities in the boom and normal states in the calibrated model, we have A31 < A21.

Furthermore, by a similar argument, we have (A22 − A23) > 0 and (A32 − A33) > 0. Therefore a

sufficient condition for the inequality (91) is (A32 −A33) > (A22 −A23), which is the condition (ii)

in Lemma 1. Arranging these implication steps in the reverse order yields the proof that conditions

(i) and (ii) in Lemma 1 imply the first undershooting relationship in (41) (or (83)) of the recovered

probabilities in the subjective specification. The second undershooting relationship follows from a

similar derivation thread, which centers around the presence of the rare disaster state {1} in the

calibrated economy as discussed in Section 4.2 ■

4 For the first inequality, we note that A22A31 = δ2p22p31
M1

M3
, A21A32 = δ2p21p32

M1

M3
, while numerically

p32 ≈ p22 and p31 < p21 (because the likelihood of getting to the disaster state {1} next period from the boom
state {3} is lower than from the normal state {2} in the calibrated model to the U.S. economy), implying
A22A31 < A21A32. For the second inequality, we note that (A11 + A12) = δp11 + δp12

M2

M1
, A23 = δp23

M3

M2
,

p11 ≪ p23 (because the underlying disaster state {1} is exceedingly rare) and M2

M1
≪ M3

M2
(because the disaster

state’s marginal utility M1 is high), implying (A11 +A12) < A23.
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Case 2 - Current single state: Now let the current underlying state be the boom state {3}. Per

the consolidation scheme (82), the second analyst perceives the current state {2}, which is a single

state. The following lemma presents sufficient conditions for the overshooting (49) of the transition

probabilities recovered in our calibration.

Lemma 2 When the underlying market model (associated with the specification S) features A23A32 <

A22A33, then follows the undershooting of the recovered transition probabilities pt,t+1(2, 2) > pt,t+1(3, 3)

(49).

Note that the this lemma’s sufficient condition is weaker than those underlying the Lemma 1,

implying that a single economic setting that explains the undershooting (83) of the transition

probabilities recovered with the current coupled state {2} also explains the overshooting of the

transition probability recovered with the current single state {3} in Lemma 2.

Proof: We also work out an explicit expression for the implied one-period AD price matrix A. But

as the current state is {3}, this expression (92) for A differs from (84) (which is for the current state

{2}). Specifically, after consolidating long-term AD asset prices in Aτ in S into those in Aτ in S,

the recursive formula A =
[
Aτ

]−1
Aτ+1 (39) yields an explicit solution for the implied one-period

AD price matrix in the consolidated specification,

A =

 A31 +A32 A33

A2;31 +A2;32 A2;33


−1 A2;31 +A2;32 A2;33

A3;31 +A3;32 A3;33

 (92)

=
1

det(Aτ )

 A2;33(A2;31 +A2;32)−A33(A3;31 +A3;32) A2
2;33 −A33A3;33

−(A2;31 +A2;32)
2 + (A31 +A32)(A3;31 +A3;32) −A2;33(A2;31 +A2;32) +A3;33(A31 +A32).


To a good approximation, we also take δ = δ in the analysis as before. Note that the overshoot

relationship pt,t+1(2, 2) > pt,t+1(3, 3) in Lemma 2 is equivalent to A2 2 > A33 by virtue of the pricing

equation (3) for one-period AD assets. Using solution (92), we can write this inequality as

−A2;33(A2;31 +A2;32) +A3;33(A31 +A32)

(A31 +A32)A2;33 − (A2;31 +A2;32)A33
> A33. (93)
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Using again the recursive relationship Aτ+1 = AτA, or explicitly,

A2;31 = A31A11 +A32A21 +A33A31

A2;32 = A31A12 +A32A22 +A33A32

A2;33 = A31A13 +A32A23 +A2
33 (94)

A3;31 = A2;31A11 +A2;32A21 +A2;33A31

A3;32 = A2;31A12 +A2;32A22 +A2;33A32

A3;33 = A2;31A13 +A2;32A23 +A2;33A33.

we can express the denominator (denoted as D3) of the fraction on the LHS of (93) in terms of

one-period AD asset prices as,

D3 = (A31 +A32)A13A31 + (A31 +A32)A23A32 − (A11 +A12)A31A33 − (A21 +A22)A32A33. (95)

First, we show that this denominator is negative, D3 < 0. To this end, note that among 4 terms

of D3, the first term is dominated by the second term, the third is dominated by the fourth.5 As

a result, we can approximately simplify D3 as

D3 = A32 [(A31 +A32)A23 − (A21 +A22)A33] .

Because A31A23 < A21A33,
6 we have D3 < A32 [A32A23 −A22A33]. By virtue of the condition

A32A23 < A22A33 in Lemma 2, we have D3 < 0.

Next, since the denominator D3 of the fraction on the LHS of inequality (93) is negative, (93)

5That is, |(A31 +A32)A13A31| ≪ |(A31 +A32)A23A32|, and |(A11 +A12)A31A33| ≪ |(A21 +A22)A32A33|.
This is because as {1} is a rare disaster state, the transition probabilities pi1 from any underlying state {i} to
the underlying disaster state {1} next period is exceedingly small. As a result, the prices {Ai1} of insurances
against state {1} are dominated by the prices {Aj2, Ah2} of insurances against non-disaster states {2, 3}.

6Note that A31 < A21 (per the discussion below (91)). Similarly, A23 < A33 (because p23 ≈ p33 and
their difference is dominated by the difference between the marginal utilities in the boom and normal states,
M3 < M2).
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is equivalent to

−A2;33(A2;31 +A2;32) +A3;33(A31 +A32) < A33 [(A31 +A32)A2;33 − (A2;31 +A2;32)A33] .

Using (94) to substitute out the longer-term AD asset prices {A2;ij , A3;ij} and rearrange terms,

the above equality becomes (A23−A13)
[
A31A32(A22 −A11) +A2

31A12 −A2
32A21

]
< 0. Since A23−

A13 > 0, in turn this is equivalent to,7

A31A32(A22−A11)+A2
31A12−A2

32A21 = A32(A31A22−A32A21)+A31(A31A12−A32A11) < 0, (96)

Note that the second group of terms A31(A31A12−A32A11) is dominated by the first A32(A31A22−

A32A21) (because the first group is linear and the second in quadratic in prices {Ai1}, which are

very small because the underlying state {1} is exceedingly rare, see Footnote 3). We therefore can

rewrite (96) as A32(A31A22 − A32A21) < 0. This is true because A31A22 − A32A21 as explained

below Equation (90) and Footnote 4. Arranging these implication steps in the reverse order yields

a proof of Lemma 2 ■

B.3 Recovery Inconsistency Direction: Calibration Details

Data source: We use three data sets: US household real consumption expenditure data from

OECD, S&P 500 price data from Yahoo Finance, and 3-month Treasury Bill rate data from FRED.

All three data sets are at quarterly frequency from 1985Q1 to 2022Q4.

Model specification: We calibrate to a 3-state, 2-period (t and t+1) consumption-based CAPM

(CCAPM) model, where the utility function is c1−γ

1−γ and c ∈ {c1, c2, c3}. Suppose the current state

at t is the normal state (state 2). The pricing kernel at time t is Λt = δ
Ä
ct+1

ct

ä−γ
, where ct = c2

and ct+1 ∈ {c1, c2, c3}.

Since we focus on an ergodic Markov chain (i.e., every state is reachable over a finite period

of time), in the long run, the time-series average and the cross-sectional average coincide. As our

7Note that A23 − A13 = δ
î
p23

M3

M2
− p13

M3

M1

ó
. Because the disaster state {1} has significantly higher

marginal utility (M1 > M2) while the transition probabilities to the boom state {3} next period are similar
p23 ≈ p13, we have A23 −A13 > 0.

17



sample period is sufficiently long, it is reasonable to analyze the moments under the stationary

distribution. Denote the stationary probabilities as pss = [p1, p2, p3]
′, which is the left eigenvector

(normalized to have sum equal to 1) of P corresponding to the eigenvalue equal to 1.

The risk-free rate rft+1 from t to t+ 1 must satisfy the following Euler equation

1

1 + rft+1

= Et [Λt+1] , (97)

where the expectation is taken over pss, and the risk-free rate is known at t.

To price the aggregate stock market (a risky asset), note that the stock market price is defined to

be the value of discounted dividends. In the Lucas tree model, the equilibrium consumption is equal

to the dividend of the aggregate stock market in each period. Therefore, we have St = Et [Λt+1ct+1],

or in terms of stock return, we have 1 = Et

[
Λt+1(1 + rst+1)

]
, where rst+1 =

ct+1

St
− 1 is the return on

the stock from t to t+ 1. The above equation then becomes the following CCAPM formula

Et[r
s
t+1]− rft+1 = −(1 + rft+1)Covt

(
Λt+1, r

s
t+1

)
. (98)

Parameter estimation: Our goal is to find a 3× 3 probability matrix P = [pij ] whose stationary

distribution will match the moments below. Since the calibration is left with several degrees of

freedom, we exogenously specify the transition probabilities to model three stylized but basic states

of the economy, namely a rare adverse (disaster, low consumption) state {1}, a normal (moderate-

consumption) state {2}, and a boom (high-consumption) state {3}. We first make a exogenous

(random-generated) choice for the triplet transition probabilities {pi1}, {i} ∈ {1, 2, 3}, with upper

bound of 0.05 each, and constrained by p11 > p21 > p31. These exogenous constraints aim to model

and stylize state {1} as a rare disaster state, that is more likely to reach when the current state

is (i) a disaster state, than (ii) a normal state, than (iii) a boom state. We then employ {pi1} as

inputs for the calibration. Since each row of P sums to one, we are left with 3 probabilities to

estimate, i.e., p12, p22, and p32.
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We will match the following moments to the data.

Average consumption growth: µc = Et

ï
ct+1

ct
− 1

ò
(99)

Consumption growth volatility: σ2
c = Et

ñÅ
ct+1

ct
− 1− µc

ã2ô
(100)

Risk premium of stock: rxst = −(1 + rft+1)Covt
(
Λt+1, r

s
t+1

)
(101)

Stock return volatility: σ2
s = Et

ñÅ
ct+1

Et [Λt+1ct+1]
− 1− (rxst + rft+1)

ã2ô
(102)

Risk-free rate:
1

1 + rft+1

= Et [Λt+1] . (103)

Note that in our estimation, all quantities on the RHS of the above equations are taken from the

3-state model while all quantities on the LHS are from the actual data.

Define g to be a vector containing the 5 moment conditions

g =



Et

î
ct+1

ct
− 1
ó
− µc

Et

[Ä
ct+1

ct
− 1− µc

ä2]
− σ2

c

−(1 + rft+1)Covt
(
Λt+1, r

s
t+1

)
− rxst

Et

[Ä
ct+1

Et[λt+1ct+1]
− 1− (rxst + rft+1)

ä2]
− σ2

s

Et [Λt+1]− 1

1+rft+1


,

where the expectation is over the stationary probabilities pss. Given the weight matrix A, we

choose p12, p22, p32 to minimize J = g′Ag subject to the constraint 0 ≤ p12, p22, p32 ≤ 1 and

p13 = 1 − p11 − p12, p23 = 1 − p21 − p22, p33 = 1 − p31 − p32. The standard two-stage GMM

estimation results are given in Section 4.1.

C Extensions to Basic Recovery Framework

We discuss the generalized recovery and best-fit recovery approaches and the associated consistency

issues respectively in Sections C.1 and C.2.
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C.1 Generalized Recovery

Recall that the basic recovery approach assumes time-homogenous state space dynamics (Assump-

tion A2) to imply the entire one-period AD price matrix, which is needed to recover the transition

probability between any two states via the Recovery Theorem. Not only the determination of this

matrix is intricate, upholding the time-homogeneity assumption also rules out interesting the state

space dynamics. To address these limitations, Jensen et al. (2019)’s (or JLP (2019) hereafter) relax

the time-homogeneity assumption and establish a generalized recovery approach. This appendix

briefly describes the generalized recovery and discusses the associated consistency issue.

Generalized recovery’s setup: While relaxing the time-homogeneity requirement for the state

transition dynamics, the generalized recovery aims to recover the transition probabilities starting

only from the actual current state of the economy (say, state {i} at the current time t = 0). The

pricing of the τ -period AD assets {Aτ ;1j}, for {{j} ∈ S}, implies a relation between AD prices and

the corresponding transition probabilities,8

Aτ ;1j
1

Mj
= δτp0,τ (1, j)

1

M1
, ∀{j} ∈ S, τ ∈ {1, . . . , T}. (104)

Consequently, the summation over all final states {j}’s, together with the condition
∑

{ j}p0,τ (1, j) =

1, generates the key equation system for the generalized recovery,

∑
{j}∈S

Aτ ;1j
M1

Mj
= δτ , or Aτ ;11 +

{S}∑
{j}=2

Aτ ;1j
M1

Mj
= δτ , ∀τ ∈ {1, . . . , T}, (105)

which determines the time discount factor δ and risk preferences
¶

Mj

M1

©
, {j} ∈ {1, . . . , S}. Gener-

alizing (3), the transition probability from the current state to any state {j} at time τ then follows

from (104)

p0,τ (1, j) = δ−τAτ ;1j
M1

Mj
, {j} ∈ {1, . . . , S}, τ ∈ {1, . . . , T}. (106)

Note that in contrast to Ross’s recovery, the generalized recovery system is non-linear and employs

8To arrive at this relationship, note that the pricing of τ -period AD assets is, Aτ ;1j = E0

î
δτ

Msτ

M1
1j(sτ )

ó
=

p0,τ (1, j)δ
τ Mj

M1
, where the indicator function 1j(sτ ) denotes the payoff of AD asset Aτ ;1j .
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price data of all T available horizons while being limited to the initial state being the actual

current state {1}. The generalized recovery centers on the counting arguments concerning the

system (105) of S unknowns
¶
δ, M1

M2
, . . . , M1

MS

©
and T nonlinear equations (one for each value of

τ in {1, . . . , T}).9 When the number of unknowns is greater than or equal to that of equations,

S ≥ T , there are multiple solutions of this nonlinear equation system in general, ruling out an

unambiguous (unique) recovery of the transition probabilities, time and risk preferences. When

S < T , the system does not have a solution in general, also ruling out a successful recovery.

However, JLP (2019) observe that when AD price data arise from a no-arbitrage asset pricing

model consistent with a time-separable preference (Assumption A1), the system (105) has a unique

solution,10 which conceptually constitutes the generalized recovery.

Consistency issue in generalized recovery: Intuitively, compared to the Ross’s original re-

covery equation system (which is linear and recursive), the generalized recovery system (106) is

non-linear. This non-linearity would exacerbate any inconsistencies originated with a subjective

state space specification that does not satisfy the necessary and sufficient condition for consistency

(Proposition 1). Specifically, consider two different analysts implementing the generalized recov-

ery process respectively using their subjective input specifications S = {1, . . . , S} (original) and

S = {1, . . . , S} (consolidated). We examine whether their recovery results are reconcilable, i.e. the

consistency issue, in two exhaustive scenarios, namely, the current state being a single or a coupled

state.

Case 1 - Current single state: Let the first K consolidated states be single states and the remain-

ing consolidated state be a coupled state (with K = S − 1), namely, {1} = {1}, . . . , {K} = {K},

{S} = {K + 1, . . . , S}. Let the current state be the first single state {1} = {1}. While the

first (original) analyst solves the generalized recovery system (105) associated with S, the second

9Because SDF can only be determined up to a multiplicative constant, the recovery process concerns only

the ratios of marginal utilities
¶

M1

M2
, . . . , M1

MS

©
. Equivalently, we can normalize the marginal utility in the

first state to be one, M1 = 1, without loss of generality.
10Intuitively, in this case, price data are redundant and also consistent because they arise from the same

underlying market model. As a result, data redundancy does not lead to inconsistencies in the solution of
the system (105), and the generalized recovery works.
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(consolidated) analyst solves a similar system associated with S,

{K}∑
{j}={1}

Aτ ;1 j

M1

M j

+ Aτ ;1S

M1

MS

= δ
τ
, ∀τ ∈ {1, . . . , T}. (107)

where Aτ ;1j and Aτ ;1 j denote the τ−period observable AD asset prices initiated on the current state

{1} = {1} that pay respectively on states {j} and {j} of the original and consolidated specifications.

These AD asset prices are related by the no-arbitrage principle,

Aτ ;1 j = Aτ ;1j , ∀{j} = {j} ∈ {1, . . . ,K}; Aτ ;1 S =

{S}∑
{j}={K+1}

Aτ ;1j ; ∀τ ∈ {1, . . . , T}, (108)

Given two sets of recovery results in S and S, the following consistency conditions set the criteria

to assure the compatibility of recovery results obtained by different analysts

time discount factor : δ = δ, (109)

transition probability :

 p0,τ (1, j) = p0,τ (1, j),

p0,τ (1, S) =
∑{S}

{ℓ}={K+1} p0,τ (1, ℓ),

∀{j} = {j} ∈ {1, . . . ,K},

∀τ ∈ {1, . . . , T},

(110)

marginal utilities :


Mj

M1

=
Mj

M1
,

MS

M1

=
∑{S}

{ℓ}={K+1}
p0,τ (1,ℓ)∑{S}

{h}={K+1} p0,τ (1,h)

Mℓ
M1

,

∀{j} = {j} ∈ {1, . . . ,K},

∀τ ∈ {1, . . . , T}.

(111)

When at least some of the consistency conditions do not hold, the consistency issue in the general-

ized recovery arises. Intuitively, the recovery results in an input specification (S or S) are obtained

from solving the respective nonlinear equation system ((105) or (107)). These equation systems for

different specifications are only loosely related by the no-arbitrage relationships (108) between the

AD asset prices {Aτ ;1j} and {Aτ ;1 j} observed by analysts. Whereas, the solutions of these loosely

related nonlinear equation systems need to satisfy a set of strict consistency conditions (109)-(111),

indicating the challenge of a consistent generalized recovery. Quantitatively, to demonstrate this

challenge, we first assume that the original S (employed by the first analyst) is the underlying
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state space specification of the market model. In this premise, the generalized recovery works for

S and the first analyst’s equation system (105) recovers unambiguously the characteristics (transi-

tion probabilities starting from the current state, and time and risk preferences) of the underlying

market model (JLP (2019)).11 Perceiving a different subjective specification S, the second ana-

lyst employs the (consolidated) AD asset prices {Aτ ;1 j} (108) to formulate and solve the recovery

system (107). In the interest of a recovery consistency analysis, we assume that the generalized

recovery works under the (consolidated) specification S.12 As the (in)consistency between recovery

results in S and S is reflected in the (in)compatibility between the recovery equation systems (105)

and (107), we first employ the AD price relation (108) and the required conditions (109), (111) to

express the consolidated recovery system (107) in terms of original prices {Aτ ;1j},

{K}∑
{j}={1}

Aτ ;1j
M1

Mj
+

{S}∑
{j}={K+1}

Aτ ;1j
M1

MS

= δτ , ∀τ ∈ {1, . . . , T}. (112)

We observe that system (112) is compatible with the original recovery system (105) only when∑{S}
{j}={K+1}Aτ ;1j

M1
Mj

=
∑{S}

{j}={K+1}Aτ ;1j
M1

MS

, for all τ ∈ {1, . . . , T}. For each τ , this equation

presents a compatibility condition for systems (105) and (107). In the current analysis setting

(with S being the true underlying specification), the AD prices {Aτ ;1j} and underlying marginal

utilities {Mj} are the (consistent) given inputs, the consolidated marginal utilities {M j} are implied

(recovered). Hence, for the compatibility condition to hold for all τ ∈ {1, . . . , T}, the only possibility

is that the underlying marginal utilities for all single states be identical: Mj = κ, ∀{j} ∈ {{K +

1}, . . . , {S}}. In this premise, these underlying marginal utilities are equal to the recovered marginal

utility κ = MS , i.e., the recover results are consistent. We note that this condition on the underlying

marginal utilities is identical to that concerning the Ross’s recovery (Proposition 1).

Case 2 - Current coupled state: Now let the first consolidated state 1 be a coupled state and and the

remaining S−1 consolidated states be single states, namely, {1} = {1, . . . ,K}, {K + 1} = {K+1},
11Recall that the key point of generalized recovery is that, when it works, the number of data horizons

can be larger than the number of states, T > S, as discussed below (106).
12With regard to the second analyst’s perspective (S), there are only two possibilities; either (i) the

generalized recovery works (i.e., system (107) has a unique solution), or (ii) the generalized recovery does
not work (i.e., system (107) has none or multiple solutions). We rule out the possibility (ii) in our analysis
because in this case, the recovery works for the first but not the second analyst, making their recovery results
outright incompatible.

23



. . . , {S} = {S}. Let the current underlying state be the first state {1} of the original specification

S. Therefore, the second analyst perceives the coupled state {1} as the current state. The observed

τ -period AD asset prices {Aτ ;1j} and {Aτ ;1 j} are interpreted by the two analysts according to their

perceived specifications, and similar to (108), are related by the no-arbitrage principle

Aτ ;1 1 =

{K}∑
{j}={1}

Aτ ;1j ; Aτ ;1 j = Aτ ;1j , {j} = {j} ∈ {K + 1, . . . , S}; ∀τ ∈ {1, . . . , T}. (113)

The first analyst solves the original generalized recovery system (105), and the second solves a

similar system associated with the consolidated specification S,

Aτ ;1 1 +

S∑
j=K+1

Aτ ;1 j

M1

M j

= δ
τ
, ∀τ ∈ {1, . . . , T}. (114)

Similar to (109)-(117), the consistency conditions for the two analysts’ recovery results are

time discount factor : δ = δ, (115)

transition probabilities :


p0,τ (1, 1) =

∑{K}
{ℓ}={1} p0,τ (1, ℓ)

Mℓ
M1

,

p0,τ (1, j) = p0,τ (1, j)
1−

∑{K}
{ℓ}={1} p0,τ (1,ℓ)

Mℓ
M1

1−
∑{K}

{ℓ}={1} p0,τ (1,ℓ)
,

∀τ ∈ {1, . . . , T},

∀{j} = {j} ∈ {K + 1, . . . , S},

(116)

marginal utilities :
M j

M1

=
Mj

M1

1−
∑{K}

{ℓ}={1} p0,τ (1, ℓ)

1−
∑{K}

{ℓ}={1} p0,τ (1, ℓ)
Mℓ
M1︸ ︷︷ ︸

≡H

,
∀{j} = {j} ∈ {K + 1, . . . , S},

∀τ ∈ {1, . . . , T}.

(117)

Intuitively, because the non-linear recovery systems (105) in S and (114) in S are only loosely related

(via the relationships (113) between τ -period AD asset prices observed by analysts), their solutions

in general do not satisfy the strict consistency conditions (115)-(117), indicating the consistency

issue for the generalized recovery. Quantitatively, the consistency issue can be seen as a conflict

when we assume that the generalized recovery works for both specifications and uphold conditions

(115)-(117) as required for the consistency. To this end, we employ the AD price relationships (113)
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and consistency conditions (115) and (117) to express the consolidated recovery system (114) in

terms of original prices {Aτ ;1j},

{K}∑
{j}={1}

Aτ ;1j +

{S}∑
{j}={K+1}

Aτ ;1j
M1

Mj
H = δτ , ∀τ ∈ {1, . . . , T}, (118)

where the state-independent parameter H =
1−

∑{K}
{j}={1} p0,τ (1,j)

1−
∑{K}

{j}={1} p0,τ (1,j)
Mj
M1

is defined in (117). We observe

that system (118) is compatible with the original recovery system (105) only when M1
Mj

= 1, for all

{j} ∈ {1} = {1, . . . ,K}.13 We note that this condition on the underlying marginal utilities is also

identical to that concerning the Ross’s recovery (Proposition 1).

To summarize the analysis for both cases (single and coupled current state), the generalized

recovery results obtained under the two specifications S ⊃ S are mutually consistent if and only if

all single states {j} ∈ S that correspond to a coupled state {j} ∈ S are indistinguishable from the

coarser specification S’s perspective. This condition mirrors Proposition 1 for Ross’s recovery and

indicates an elusive nature of a consistent generalized recovery implementation.

C.2 Best-Fit Recovery

Given a subjective (input) specification S of S states, the basic recovery approach employs price

data of just enough S + 1 maturities τ of long-term AD assets in the recursive equation system

Aτ+1 = AτA (4) to imply exactly the one-period S × S AD price matrix A. Another analyst

associated with a different subjective specification S of S < S states just needs to employ less price

data (of S + 1 maturities of long-term AD assets) to imply exactly the one-period S × S AD price

matrix A. The inadvertent loss of information in the latter recovery (compared to the former) gives

rise to the consistency issue between their exact recovery results as elaborated in Equation (24),

Section 3.1. Then a possible approach to mitigate the consistency issue would employ more price

data than needed to obtain approximate (instead of exact) recovery results in different specifications

13Note that when this condition holds, we have H ≡
1−

∑{K}
{j}={1} p0,τ (1,j)

1−
∑{K}

{j}={1} p0,τ (1,j)
Mj
M1

= 1, and systems (118) and

(105) are identical in this case. Therefore, we do not need the additional condition H = 1 to identify (118)
with (105).
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that might exhibit no mutual inconsistencies.

In this approximate recovery approach, we transform and interpret the recovery systems (4)

and (105) as regression equation systems, employing all T available (possibly redundant) price

data inputs to uniquely obtain a set of best-fit characteristics (i.e., recovery results associated with

the given subjective specification).14 So the best-fit recoveries can flexibly accommodate as many

available maturities T as data sources provide and also addresses an important conceptual question

on whether observing an infinite amount of error-free price data always assures successful recoveries.

Best-fit Ross’s recovery: For the original recovery system (4), the best-fit one-period AD asset

price matrices associated with the original S and consolidated S specifications are

Original system: A = [A′
TAT ]

−1A′
TAT+1,

Consolidated system: A =
î
A

′
TAT

ó−1
A

′
TAT+1,

(119)

where AT and AT are matrices of containing all available long-term AD asset prices and consol-

idated long-term AD asset prices associated respectively with S and S.15 Employing more price

data does not weaken the consistency conditions, and hence does not alleviate the consistency is-

sue in the basic recovery approach. Intuitively, this is because the no-arbitrage condition applies

uniformly across all price data points employed in the consolidation, as reflected in the presence of

a single indicator matrix C in (16) across various data horizons. As the AD price matrix A in the

original specification S is exogenous to the consolidated specification S (and thus C), the consis-

tency condition (19) applies for both the original (just-identified) and the best-fit implementations

of the basic recovery process. As a result, (21) remains a necessary and sufficient condition for the

(equally elusive) best-fit approach to Ross’s recovery.

Best-fit generalized recovery: For specificity, let {1} and 1 be the current state in the original

14To illustrate, for the specific Example 1, the exact recovery employs only four maturities (τ ∈ {1, 2, 3, 4})
of AD assets for the original specification S = {1, 2, 3}, and only three maturities (τ ∈ {1, 2, 3}) for the
consolidated specification S = {1, 2}.

15The best-fit solutions (119) arise from the regression-based formulation of the recovery systems (4) when
there are more data inputs than unknowns (over-identification),

AT+1︸ ︷︷ ︸
T×S

= AT︸︷︷︸
T×S

A︸︷︷︸
S×S

, AT+1︸ ︷︷ ︸
T×S

= AT︸︷︷︸
T×S

A︸︷︷︸
S×S

.

26



S and consolidated S specifications. For the best-fit generalized recovery, we stack equations in

(105) for T different horizons in S and S into respective matrix forms, AT f = δ and AT f = δ,

where the explicit expressions of these matrices and vectors are as follows,



A11 . . . A1S

A2;11 . . . A2;1S

... . . .
...

AT ;11 . . . AT ;1S


︸ ︷︷ ︸

AT



1

M1
M2

...

M1
MS


︸ ︷︷ ︸

f

=



δ

δ2

...

δT


︸ ︷︷ ︸

δ

, and



A1 1 . . . A1S

A2;1 1 . . . A2;1S

... . . .
...

AT ;1 1 . . . AT ;1S


︸ ︷︷ ︸

AT



1

M1

M2

...

M1

MS


︸ ︷︷ ︸

f

=



δ

δ
2

...

δ
T


︸ ︷︷ ︸

δ

.

(120)

We assume that the original and consolidated price matrices AT , AT have full rank given the long

time horizon and randomness in the price data. Note that the generalized recovery equations (120)

are non-linear (involving powers of time discount factors) and the recovered time discount factors’

consistency condition requires that δ = δ. For a consistency analysis, at first we take δ = δ as

required (assuring the time discount factors’ consistency), which allows to interpret (120) as linear

equation systems that solve for ratios of marginal utilities, Aτ f = δ and Aτ f = δ. When employed

price data are redundant, T > S and T > S, the best-fit recovery solutions of the marginal utilities

are respectively,

f =
[
A′

τAτ

]−1
A′

τδ, f =
î
A

′
τAτ

ó−1
A

′
τδ =

î
A

′
τAτ

ó−1
A

′
τδ. (121)

Using the relationship AT = ATC between long-term AD asset prices in the two specifications, we

have16

[
C′A′

τAτC
]
f = C′A′

τδ. (122)

We observe that the solution f to the second equation in (121) (or equivalently (122)) does not

16Indeed, AT = ATC implies that the left-hand side of (122) is [C′A′
τAτC] f =

î
A

′
τAτ

ó
f . The substi-

tution of f from (121) shows that this expression equals
î
A

′
τAτ

ó î
A

′
τAτ

ó−1
A

′
τδ = A

′
τδ = C′A′

τδ, which is

the right-hand side of (122).
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present a valid marginal utility recovery result in general,17, indicating a consistency issue. However,

when condition (21) holds, the two equation systems in (120) yield consistent solutions for time

discount factors and ratio of marginal utilities.

In summary, the best-fit approach that utilizes redundant (possibly, infinite) price data does

not alleviate the consistency issue in either the original or generalized recovery approaches, except

when a strong necessary and sufficient condition underlying Proposition 1 holds.

17This is because the first entry of such a solution generally differs from one, hence violating the normal-
ization constraint of a valid recovery solution (per the second system in (120))
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